Disruption of MDA5 mediated innate immune responses by the 3C proteins of				
Coxsackievirus A16, Coxsackievirus A6, and Enterovirus D68				
Yajuan Rui, ^{a,b,c} Jiaming Su, ^{a,b,c,d} Hong Wang, ^a Junliang Chang, ^a Shaohua Wang, ^a Wenwen				
Zheng, ^a Yong Cai, ^c Wei Wei, ^a James T. Gordy ^b , Richard Markham, ^b Wei Kong, ^c Wenyan				
Zhang, ^{a*} and Xiao-Fang Yu ^{a,b,d*}				
First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun,				
Jilin Province, China ^a ; Department of Molecular Microbiology and Immunology, Johns Hopkins				
Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA ^b ; School				
of Life Sciences, Jilin University, Changchun, Jilin Province, China ^c ; Cancer Institute (Key				
Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The				
Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang				
310009, China ^d				
Corresponding author: Prof. Xiao-Fang Yu, Department of Molecular Microbiology and				
Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street,				
Baltimore, MD 21205, USA. E-mail address: xyu2@jhu.edu				
Prof. Wenyan Zhang: <u>zhangwenyan@jlu.edu.cn</u>				
Running title: 3C ^{pro} inhibits MDA5 mediated cellular defense				

1

 \leq

ABSTRACT

25	Coxsackievirus A16 (CV-A16), A6 (CV-A6), and enterovirus D68 (EV-D68) belong to
26	the Picornaviridae family and are major causes of hand, foot, and mouth disease (HFMD) and
27	pediatric respiratory disease worldwide. The biological characteristics of these viruses, especially
28	their interplay with the host innate immune system, have not been well investigated. In this
29	study, we discovered that the 3C ^{pro} proteins from CV-A16, CV-A6, and EV-D68 bind MDA5
30	and inhibit its interaction with MAVS. Consequently, MDA5-triggered type I IFN signaling in
31	the RLR pathway was blocked by CV-A16, CV-A6, and EV-D68 3C ^{pro} . Furthermore, CV-A16,
32	CV-A6, and EV-D68 $3C^{pro}$ all cleave TAK1, resulting in inhibition of NF- κ B activation, a host
33	response also critical for toll-like receptor (TLR) mediated signaling. Thus, our data demonstrate
34	that circulating HFMD-associated CV-A16 and CV-A6, as well as severe respiratory disease-
35	associated EV-D68, have developed novel mechanisms to subvert host innate immune responses
36	by targeting key factors in the RLR and TLR pathways. Blocking the ability of 3C ^{pro} from
37	diverse enteroviruses and coxsackieviruses to interfere with type I IFN induction should restore
38	IFN anti-viral function, offering a potential novel anti-viral strategy.
39	
40	Key words: MDA5; TAK1; MAVS; 3C protease; CV-A16; CV-A6; EV-D68; HFMD; innate
41	immune response
42	
43	
44	
45	

23

24

Z

2

IMPORTANCE

47	
48	CV-A16, CV-A6, and EV-D68 are emerging pathogens associated with hand, foot, and
49	mouth disease and pediatric respiratory disease worldwide. The pathogenic mechanisms of these
50	viruses are largely unknown. Here we demonstrate that the CV-A16, CV-A6, and EV-D68 3C ^{pro}
51	protease blocks MDA5-triggered type I IFN induction. 3C ^{pro} of these viruses binds MDA5 and
52	inhibits its interaction with MAVS. In addition, CV-A16, CV-A6, and EV-D68 3C ^{pro} cleaves
53	TAK1 to inhibit the NF-κB response. Thus, our data demonstrate that circulating HFMD-
54	associated CV-A16 and CV-A6, as well as severe respiratory disease-associated EV-D68, have
55	developed a mechanism to subvert host innate immune responses by simultaneously targeting
56	key factors in the RLR and TLR pathways. These findings indicate the potential merit of
57	targeting CV-A16, CV-A6, and EV-D68 3C ^{pro} as an anti-viral strategy.
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

3

46

INTRODUCTION

71	Hand, foot, and mouth disease (HFMD) is a common infectious disease among young
72	children. Enterovirus 71 (EV-A71, EV71) and coxsackievirus A16 (CV-A16, CA16) are most
73	frequently associated with HFMD worldwide. Extensive studies have focused on EV-A71
74	because of its association with severe complications involving the central nervous system and
75	significant mortality (1, 2). However, since the CV-A16-related outbreak of HFMD occurred in
76	England in 1994 (3), accumulating evidence has demonstrated that CV-A16 infection can also
77	cause severe neurological complications (4) and death (5, 6). Recently, coxsackievirus A6 (CV-
78	A6) infection has also been increasingly associated with HFMD outbreaks around the world (7-
79	17). Further, enterovirus D68 (EV-D68) has been linked to severe respiratory disease worldwide
80	in recent years. To date, no effective vaccines or treatments for enterovirus or coxsackie virus
81	infection are available.
82	The interferon induction pathway is commonly targeted by viruses. Host cells orchestrate the
83	production of type I interferons (IFNs) upon detection of invading viral pathogens. To
84	antagonize viral invasion, pathogen-associated molecular patterns (PAMPs) are sensed by
85	cellular pattern recognition receptors (PRRs) to activate the type I IFN induction signaling
86	pathway (18, 19). The retinoic acid-inducible gene-I-like receptors (RLRs), are PRRs that play a
87	pivotal role in the innate immune system. The members of the RLR family, including Retinoic
88	Acid Inducible Gene-I (RIG-I), Melanoma Differentiation-Associated gene 5 (MDA5), and
89	Laboratory of Genetics and Physiology 2 (LGP2), are located in the cytoplasm and monitor for
90	the presence of viral RNA (20). RIG-I and MDA5 belong to the family of DExD/H box RNA
91	helicases that contain two caspase-activation and recruiting domains (CARD) at their N termini

4

69

70

Z

92	and a single DExD/H box RNA helicase domain at their C termini (CTD). Upon RNA viral
93	infection, the CTD domains of RIG-I and MDA5 sense viral RNA that bears a 5'-triphosphate
94	group and long kilobase-scale genomic RNA, respectively, which are both lacking in host
95	mRNA (21-26). After binding viral RNA, RIG-I and MDA5 undergo conformational changes
96	and transduce signals to the downstream adaptor MAVS (virus-induced signaling adapter, also
97	named VISA, Cardif or IPS-1) (27-29) through a CARD-CARD interaction. As a result, TRAFs,
98	IKK ε , and TBK1 are recruited by the MAVS signaling complex. IKK ε and TBK1 then
99	phosphorylate MAVS which results in recruitment of IRF3 for its phosphorylation. Furthermore,
100	phosphorylated IRF3 subsequently forms a dimer and translocates into the nucleus to activate the
101	IFN promoter (30).
102	For the Nuclear Factor Kappa-light-chain-enhancer of activated B cells(NF- κ B) activation
103	pathway, transforming growth factor- β -activated kinase 1 (TAK1) is a key player. In mammalian
104	cells, TAK1 forms a complex with TAK1 binding proteins 1, 2, and 3 (TAB1, 2, 3), which can
105	recruit adaptor proteins, such as TRAF6, to activate TAK1. TAK1 activation phosphorylates and
106	activates the IKK complex (IKK β , IKK α , and NEMO), leading to activation of NF- κ B(31).
107	CV-A16, along with EV-A71, EV-D68 and CV-A6, is a positive-stranded RNA virus
108	belonging to the Picornaviridae family. Like other members of the family, CV-A16 encodes
109	only one single open reading frame, which can be processed into four structural (VP1, VP2,
110	VP3, and VP4) and seven nonstructural (2A, 2B, 2C, 3A, 3B, 3C, and 3D) proteins upon viral
111	infection(1). Among them, the EV-A71 3C protease (3C ^{pro}) is one of the most versatile
112	functional proteins. It possesses both proteolytic and RNA binding activities (32, 33), which
113	enable the protease to perform multiple tasks in systems involving viral replication and
114	pathogen-host interaction. Increasing evidence suggests that the EV-A71 3C ^{pro} targets innate
	5

 \sum

115	immune factors, such as RIG-I, TRIF, IRF7/9, the TAK1/TAB1/TAB2/TAB3 complex, and
116	NLRP3, to modulate type I IFN and cytokine responses(34-38). Recently, EV-D68 3C ^{pro} has
117	been reported to target IRF7 and TRIF to disable innate sensing responses(39, 40). However,
118	little is known about CV-A16 and CV-A6 3C ^{pro} function in innate immunity.
119	Here, we demonstrate that the CV-A16, CV-A6, and EV-D68 3C ^{pro} blocks MDA5-triggered
120	type I IFN induction. CV-A16 3C ^{pro} binds MDA5 and inhibits its interaction with MAVS. In
121	addition, CVA-16, CV-A6, and EV-D68 $3C^{pro}$ cleaves TAK1 to inhibit the NF- κB response.
122	Thus, our data demonstrate that circulating HFMD-associated CV-A16 and CV-A6, as well as
123	severe respiratory disease-associated EV-D68, have developed a mechanism to subvert host
124	innate immune responses by simultaneously targeting key factors in the RLR and TLR pathways.
125	These findings indicate the potential merit of targeting CV-A16, CV-A6, or EV-D68 3C ^{pro} as
126	anti-viral therapy.
127	
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
	e de la construcción de la constru

 \sum

MATERIALS AND METHODS

139	
140	Cell lines and viruses. Human embryonic kidney 293T (HEK293T, CRL-11268) cells and
141	human rhabdomyosarcoma RD cells (CCL-136) were purchased from ATCC and maintained in
142	Dulbecco's modified Eagle's medium (DMEM) containing 10% heat-inactivated fetal bovine
143	serum (FBS) (HyClone, Logan, UT), 100U/mL penicillin, and 100µg/mL streptomycin, at 37°C
144	in a 5% CO2 humidified atmosphere. Sendai virus (SeV) was kindly provided by Dr. Tao Wang
145	(Tianjin University) and Dr. Junliang Chang (Jilin University).
146	
147	Antibodies and reagents. The following antibodies were used for western blotting analysis in
148	this study: anti-Flag monoclonal M2 antibody (F1804-1MG; Sigma), anti-Myc (9E10)
149	monoclonal antibody (MMS-150P; Covance), anti-HA monoclonal antibody (MMS-101R;
150	Covance), anti-Tubulin monoclonal antibody (MMS-410P; Covance), anti-V5 antibody (V8012,
151	Sigma), VP1 antiserum against CA16 obtained from rabbits immunized with CA16 CC024,
152	RIG-I (D14g6) rabbit antibody (#3743; Cell Signal), Cardif (human) antibody (AT107) (ALX-
153	210-929-C100; Enzo Life Sciences), MDA5 (human) polyclonal antibody (AT113) (ALX-210-
154	935-C100; Enzo Life Sciences), TAK1 antibody (2E10; NOVUS) and anti-p-IRF3 monoclonal
155	antibody (AB76493; Abcam). Poly I:C was purchased from Guandong South China
156	Pharmaceutical Co., LTD.
157	
158	Plasmids. Flag-MAVS, V5-TBK1, Flag-IKKE, Flag-IRF3, Flag-IRF7 and firefly luciferase
159	reporter plasmids for IFN β were kindly provided by Dr. Tao Wang (Tianjin University). NF- κ B

Σ

Accepted Manuscript Posted Online

161	Life Science, Jilin University, China). Flag-TAK1 was generously gifted by Dr.Mingyu Lv (Jilin
162	University, China). Flag-RIG-IN (CARD domain) were generously gifted by Dr. Jinhua Yang
163	(Baylor College of Medicine, Houston, TX, US) (41). Flag-MDA5-N (1-213AA) was amplified
164	from template (purchased from Fitgene Company, Shanghai) and cloned into the SalI and BamH
165	I sites of VR1012 vector. Flag-IRF3-5D was constructed by Generay Biotech Co. Ltd.
166	(Shanghai, China). Flag-TLR3 was purchased from Addgene. 3C ORFs of CV-A16 CC024
167	strain (Genbank #KF055238.1), EV-A71 063 strain (Genbank #HQ647172.1), CV-A6
168	(Changchun046/CHN/2013 7434 KT779410), and EV-D68 Fermon (AY426531.1) were cloned
169	into VR1012-HA-Flag vector using the Sal I and BamH I sites. CV-B3 (JX312064.1) 3C
170	expression vector was obtained from Generay Biotech Co. Ltd and the 3C containing DNA
171	fragment was cloned into VR1012 vector using the Sal I and BamH I sites. CV-A16, EV-D68,
172	and CV-A6 3C H40D plasmids were obtained by single site mutation.
173	
174	Luciferase reporter assay. HEK293T cells were plated into 24-well dishes and transfected the
175	following day. 100 ng of the reporter plasmid for IFN- β , NF- κ B promoters, 1ng Renilla
176	luciferase control plasmid (pRL-TK), and the indicated amounts of the expression plasmids were
177	used per well. 24h post-transfection, cells were infected with SeV (20HA/mL) or left uninfected
177 178	used per well. 24h post-transfection, cells were infected with SeV (20HA/mL) or left uninfected for 18h. Luciferase activities were then measured using a Dual-Luciferase Reporter Assay
177 178 179	used per well. 24h post-transfection, cells were infected with SeV (20HA/mL) or left uninfected for 18h. Luciferase activities were then measured using a Dual-Luciferase Reporter Assay System (Promega, Madison, WI) according to the manufacturer's instructions. Firefly luciferase
177 178 179 180	used per well. 24h post-transfection, cells were infected with SeV (20HA/mL) or left uninfected for 18h. Luciferase activities were then measured using a Dual-Luciferase Reporter Assay System (Promega, Madison, WI) according to the manufacturer's instructions. Firefly luciferase activity was normalized to Renilla luciferase activity. Finally, the relative luciferase activities
177 178 179 180 181	 used per well. 24h post-transfection, cells were infected with SeV (20HA/mL) or left uninfected for 18h. Luciferase activities were then measured using a Dual-Luciferase Reporter Assay System (Promega, Madison, WI) according to the manufacturer's instructions. Firefly luciferase activity was normalized to Renilla luciferase activity. Finally, the relative luciferase activities (Rel. Lucif. Act.) were expressed as fold changes over the empty plasmids transfected or SeV
177 178 179 180 181 182	 used per well. 24h post-transfection, cells were infected with SeV (20HA/mL) or left uninfected for 18h. Luciferase activities were then measured using a Dual-Luciferase Reporter Assay System (Promega, Madison, WI) according to the manufacturer's instructions. Firefly luciferase activity was normalized to Renilla luciferase activity. Finally, the relative luciferase activities (Rel. Lucif. Act.) were expressed as fold changes over the empty plasmids transfected or SeV non-infected controls.
177 178 179 180 181 182 183	used per well. 24h post-transfection, cells were infected with SeV (20HA/mL) or left uninfected for 18h. Luciferase activities were then measured using a Dual-Luciferase Reporter Assay System (Promega, Madison, WI) according to the manufacturer's instructions. Firefly luciferase activity was normalized to Renilla luciferase activity. Finally, the relative luciferase activities (Rel. Lucif. Act.) were expressed as fold changes over the empty plasmids transfected or SeV non-infected controls.

Σ

CPE observation. For observing CPEs, RD cells were grown on a culture dish and infected by
CV-A16, CV-A6 or EV-D68 (MOI of 0.5) and treated with IFN alpha2 (1000U/mL, Changchun
Institute of Biological Products) separately or both at the indicated time points. Morphological
changes were observed and photographed under a light microscope (Olympus IX51, Tokyo,
Japan).

190 **RNA extraction and quantitative real-time PCR.** Total RNA was extracted from cells by using Trizol (Invitrogen, Carlsbad, CA). Reverse transcription was carried out in a 20 µL 191 192 volume using a Superscript cDNA synthesis kit (Invitrogen, Carlsbad, CA) according to the 193 manufacturer's instructions. The quantitative real-time polymerase chain reaction (qPCR) was carried out on an Mx3005P instrument (Agilent Technologies, Stratagene, USA) using the 194 Master Mix (SYBR Green) Kit (Bio-Rad) and primers designed using the VP1 conserved region 195 196 sequences of CA16 as follows: CA16-F1, CATGCAGCGCTTGTGCTT; CA16-F2, 197 CATGCAACGACTGTGCTTTC; CA16-R1, CACACAATTCCCCCGTCTTAC; CA16-R2, CATAATTCGCCCGTTTTGCT. GAPDH as control: GAPDH-F: 198 CCCATCACCATCTTCCAGG; GAPDH-R: TTCTCCATGGTGGTGAAGAC. IFNB-F, 199 CACTGGCTGGAATGAGACT ; IFNB-R, TTTCGGAGGTAACCTGTAAG ; IKBA-F, 200 CGGCCTGGACTCCATGAAAG ; IKBA-R, CCTTCAC CTGGCGGATCACT ; IL-8-F, 201 202 CGGAAGGAACCATCTCACTGTG ; IL-8-R, AGAAATCAGGAAGGCTGCCAAG. The qPCR assay was carried out in a 20 μ L volume consisting of 10 μ L of 2× SYBR Green Mix 203 204 solution, 0.4μ L of 5 μ mol/L of each oligonucleotide primer and 2 μ L of cDNA template. The 205 target fragment amplification was carried out as follows: 50°C for 2 min, then 95 °C for 10 min

followed by 50 cycles consisting of 95 °C for 15s and 60°C for 1 min. The melting curve analysis 206 was 90°C for 1 min, then 55°C for 30s and 95°C for 30s. 207

Determination of Viral Titer. Virus titers were determined using the median end point of the 208 209 cell culture's infectious dose (CCID50). Serially-diluted viruses were added to RD cells grown in 210 96-well plates, and 8 replicate samples were used for each dilution. CCID50 values were 211 measured by counting infected RD cell culture wells with obvious CPEs and calculated by the Reed–Muench method(42). 212

Immunoprecipitation (Co-IP). After 48h transfection, cells were harvested and lysed with lysis 213 buffer (50mM Tris-HCl, pH7.5, 150mM NaCl, 0.5% NP-40) containing a protease inhibitor 214 cocktail (Roche, Indianapolis, IN). Lysates of cells were incubated with anti-Flag affinity matrix 215 216 (Sigma A-2220) or anti-HA affinity (Roche) at 4°C overnight on a rotator. After washing with 217 wash buffer (20mM Tris-Cl, pH7.5, 100mM NaCl, 0.05% Tween-20, 0.1mM EDTA) six times, 50µl of elution buffer (100mM Glycine-HCl, pH2.5) was added to re-suspend the beads and the 218 eluted proteins were obtained by centrifugation, followed by SDS-PAGE and WB analysis. 219 220 Western blot analysis. Cells were harvested and lysed in RIPA lysis buffer (50mM Tris-HCl, 221 222 pH7.5, 150mM NaCl, 1% NP40), and lysate was cleared by centrifugation at 16,000 g at 4°C for 223 5 min. Total cell extracts were subject to SDS-PAGE and transferred to nitrocellulose membranes (10401196; Whatman). After blocking with 5% nonfat dry milk in TBST for 1h at 224 225 room temperature (RT), membranes were incubated with the indicated primary antibodies at 4°C 226 overnight and then the corresponding alkaline phosphatase (AP)-conjugated secondary

227 antibodies (Sigma) for 1h at RT. After three washes with TBST, the blots were reacted with

228	nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3'-indolylphosphate (BCIP) (Sigma). About
229	endogenous TAK1, MDA5 and MAVS protein were detected by HRP-conjugated secondary
230	antibody (Cell Signal) for 1h at RT. After three washes with TBST, the membranes were reacted
231	with ECL sensitive kit (B500023; Proteintech) and developed by azure system c500.
232	
233	Statistical analysis. Data in the luciferase reporter assay and qRT-RCR results were presented as
234	the mean and standard error. Viral titers were analyzed using GraphPad Prism 6 software
235	(GraphPad Software, La Jolla, CA, USA). Differences among groups were analyzed by an
236	ANOVA test (Stata Corp, College Station, TX). P values <0.05 (significant) were considered
237	significant.
238	
239	
240	
241	
242	
243	
244	
245	
246	
247	
248	
249	
250	

 \sum

11

<u>.</u>	Chline
- C	Posted
	anuscript
	oted M
	Acce

RESULTS

253

251

252

254	Type I interferon induces potent CV-A16 inhibition. Type I IFNs are early host responses to
255	virus infection and can induce broad anti-viral effects. Whether CV-A16 replication could be
256	influenced by type I IFNs is not fully known. To address this question, we first treated
257	susceptible RD cells with 1000U/mL of IFN- $\alpha 2$ for twelve hours. IFN- $\alpha 2$ treated or untreated
258	RD cells were then infected with equal amounts of CV-A16 virus. Viral replication was
259	monitored by the appearance of cytopathic effect (CPE) in the cell culture. In untreated RD cells,
260	significant CPE was observed at 72 hours after infection. As expected, no CPE was observed in
261	uninfected RD cells (Fig. 1A). IFN- α 2 treatment resulted in significant viral inhibition as
262	indicated by the reduced appearance of CPE in RD cells infected with CV-A16 (Fig. 1A).
263	Reduced CV-A16 replication due to IFN- α 2 treatment was also evaluated by monitoring viral
264	RNA levels in infected RD cells. In IFN- α 2 treated RD cells, the level of CV-A16 RNA was
265	reduced by >90% when compared to that of virus-infected RD cells in the absence of IFN- α 2
266	treatment (Fig. 1B).
267	Reduced CV-A16 virus production due to IFN- α 2 treatment was also evaluated by

267 Reduced CV-A16 virus production due to IFN- α 2 treatment was also evaluated by 268 monitoring viral titer from infected RD cells at different time points. In IFN- α 2 treated RD cells, 269 the viral titer was reduced significantly when compared to that of virus-infected RD cells in the 270 absence of IFN- α 2 treatment at different time points (Fig. 1C). These data establish that type I 271 IFN can induce potent inhibition of CV-A16 replication.

Type I IFN treatment also resulted in significant viral inhibition of CV-A6 (Fig. 2A) and
EV-D68 (Fig. 2B), as indicated by the reduced appearance of CPE in RD cells infected with

12

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

1	1	í		
-	^		1	
	c		2	
ł	Ļ			
		l	i	
			1	
5				
I				
1	•	1	-	
s			1	
C	1	Ļ		
			2	
	-	1		
ţ			,	
	1			
j	٢	1	f	
٢			•	

these viruses. Reduced CV-A6 (Fig. 2C) or EV-D68 (Fig. 2D) replication due to IFN- α 2 treatment was also evaluated by monitoring viral titers from infected RD cells. In IFN- α 2 treated RD cells, the level of CV-A6 or EV-D68 viral titer was reduced significantly at different time points when compared to that of virus-infected RD cells in the absence of IFN- α 2 treatment (Fig. 2). These data establish that type I IFNs can induce potent inhibition of CV-A16, CV-A6, and EV-D68.

280

281 CV-A16, CV-A6, and EV-D68 suppress the type I IFN response triggered by RNA virus

infection. It has been established that infection with the RNA virus Sendai (SeV) can stimulate

the expression of interferons in mammalian cell lines (43, 44). Whether CV-A16 infection

activates the innate immune system has not been widely explored. Since type I IFNs can induce

potent viral inhibition, CV-A16 may have to avoid type I IFN induction during viral infection.

286 To identify how CV-A16 affects the innate immune pathway, we first determined whether it can

287 stimulate a type I IFN response. The IFN-β luciferase reporter(34) and an internal control pRL-

288 TK renilla reporter (34) were co-transfected into HEK293T cells with CV-A16 or EV-A71

289 infectious clones or a control vector plus pT7 RNA polymerase. At 24 hours post-transfection,

290 cells were infected with SeV or left uninfected for 18 hours. IFN- β promoter activity (as

291 monitored by luciferase activity) was then measured. CV-A16 replication did not trigger IFN- β

292 production (Fig. 3). As shown in Fig.3A, SeV infection stimulated IFN-β promoter activity (line

293 2) almost 50-fold when compared to the uninfected cells (lane 1). In contrast, CV-A16

294 replication in HEK293T cells showed no stimulation of the IFN-β promoter (lane 3). HEK293T

cells were sensitive to CV-A16 infection, resulting in the appearance of CPE (Fig. 3C). At the

same time, CV-A16 replication in HEK293T cells inhibited SeV infection-induced IFN- β

297	production (Fig. 3A, lane 4). Consistent with previous reports (35), EV-A71 replication also
298	suppressed SeV-triggered IFN-β induction (Fig.3A, lane 6).
299	In addition to activating type I IFN pathways, RNA virus infection can also trigger NF-κB
300	activation. We examined NF- κ B promoter activity after SeV infection in the absence or presence
301	of CV-A16 or EV-A71. EV-A71 barely activated the NF-κB promoter, which is consistent with
302	previous reports (35, 36, 45). Moreover, we revealed that CV-A16 did not trigger NF-KB
303	activation. Similar to their effects on the suppression of IFN- β production, SeV-mediated NF- κB
304	promoter activation was significantly suppressed by CV-A16 and EV-A71 (Fig. 3B, compare
305	lanes 2, 4 and 6). These results indicate that host immune defense systems are impaired during
306	CV-A16 virus propagation. We have also observed that CV-A6 or EV-D68 virus infection did
307	not trigger type I IFN (Fig. 3D) or NF-κB (Fig. 3E) production. Furthermore, SeV-mediated type
308	I IFN (Fig. 3D) and NF- κ B (Fig. 3E) production was significantly suppressed by CV-A6 or EV-
309	D68 infection. Enterovirus 2Apro cleaves eukaryotic initiation factors 4GI and 4GII (eIF4GI
310	and eIF4GII) within virus-infected cells(46-48). CV-A16 2A protease could inhibit SeV
311	replication by inhibiting cap-dependent mRNA translation and inhibiting SeV-induced activation
312	of MAVS signaling. It is thus important to address whether CV-A16 3Cpro expression alone
313	could suppression of SeV triggered immune activation.
314	

315 $3C^{pro}$ of CV-A16 suppresses SeV induced type I IFN response. In addition to its role in 316 viral polyprotein processing, $3C^{pro}$ of certain enteroviruses has been shown to play a pivotal role 317 in suppressing IFN- β production(35-38, 49-53). However, the role of $3C^{pro}$ of CV-A16, CV-A6 318 and EV-D68 in suppressing IFN- β activation has not been well characterized. To determine the 319 capacity of CV-A16 $3C^{pro}$ to block the type I IFN response, IFN- β promoter activity in the

 \geq

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

320	absence or presence of CV-A16 3C ^{pro} was assessed using the luciferase assay. As shown in Fig.
321	4A, expression of CV-A16 $3C^{pro}$ inhibited SeV-induced IFN- β promoter activity significantly.
322	As expected, similar activity for EV-A71 3C ^{pro} was observed (Fig. 4A) when both proteins were
323	expressed at similar levels (Fig. 4B). Thus, our results indicate that CV-A16 utilizes 3C ^{pro} to
324	antagonize type I IFN induction. Consistent with the IFN- β promoter assay results, endogenous
325	IFN- β mRNA expression was induced by SeV infection and was then reduced in a dose
326	dependent manner by the addition of CV-A16 3C ^{pro} (Fig. 4C). Type I IFN-induced ISG56
327	mRNA expression was also induced by SeV infection and was then similarly inhibited by the
328	addition of CV-A16 3C ^{pro} (Fig. 4C).
329	In response to RNA virus infection, the cytosolic RNA sensors RIG-I and MDA5 initiate
330	antiviral signaling, and consequently a number of downstream molecules are recruited and
331	activated (18). IFN- β transcription and production requires IRF3 phosphorylation and
332	dimerization after virus stimulation. To further confirm the inhibitory effect of CV-A16 3C ^{pro} on
333	type I IFN responses, we assayed for IRF3 phosphorylation. Plasmids encoding CV-A16 3C ^{pro} or
334	EV-A71 3C ^{pro} were co-transfected into HEK293T cells with an IRF3 expression vector for 24
335	hours. Transfected cells were then treated with SeV for another 24 hours, followed by western
336	blot analysis for phosphorylated IRF3. IRF3 phosphorylation could be triggered by SeV
337	infection (Fig. 4D, lane 4). However, IRF3 phosphorylation was inhibited significantly in cells
338	expressing CV-A16 3C ^{pro} or EV-A71 3C ^{pro} (Fig. 4D, lanes 5 and 6). The 2A ^{pro} of EV-A71 has
339	also been reported to inhibit innate immune responses (38, 45, 54-58). We have observed that
340	CV-A16 2A ^{pro} could enhance the CV-A16 3C ^{pro} -mediated type I IFN activation inhibition
341	induced after SeV infection (Fig. 4E).

Σ

We have also observed that CV-A6 or EV-D68 3C^{pro} inhibited SeV-induced IFN-β promoter
activation (Fig. 4F). SeV infection-triggered IRF3 phosphorylation was also inhibited
significantly in cells expressing CV-A6 3C^{pro} or EV-D68 3C^{pro} (Fig. 4G). Collectively, our
results demonstrate that 3C^{pro} of CV-A16, CV-A6, and EV-D68 are all able to inhibit type I IFN
responses.

347 3C^{pro} of CV-A16, CV-A6, or EV-D68 inhibits type I IFN responses upstream of IRF3

activation. Since CV-A16 3C^{pro} expression inhibited IRF3 phosphorylation, we first determined

349 whether CV-A16 3C^{pro} can directly influence the function of IRF3. To address this question, a

350 constitutively active form of IRF3 (IRF3-5D(44)) was used to induce the activation of the IFN- β

promoter in HEK293T cells transfected with IRF3-5D alone or co-transfected with CV-A16

352 $3C^{\text{pro}}$. Consistent with a previous report (37), ectopic expression of IRF3-5D stimulated IFN- β

induction (Fig. 5A). IFN- β activation stimulated by IRF3-5D was not inhibited by CV-A16 3C^{pro}

354 (Fig. 5A). CV-A16 3C^{pro} protein expression was confirmed by western blot analysis (Fig. 5B).

355 IFN-β promoter activation stimulated by IRF3-5D was also not inhibited by CV-A6 or EV-D68

356 3C^{pro} (Fig. 5A). IKKε (Fig. 5C) and TBK1 (Fig. 5D) also stimulated IFN-β expression, which

357 was consistent with previously reports (35, 59, 60). None of CV-A16, CV-A6, or EV-D68 3C^{pro}

had an inhibitory effect on IFN- β promoter activation induced by IKK ϵ (Fig. 5C) or TBK1

359 (Fig.5C). Collectively, our results have demonstrated that 3C^{pro} of CV-A16, CV-A6, or EV-D68

360 inhibits the induction of type I IFN responses upstream of IRF3, TBK1, and IKK ϵ .

361 CA16 3C^{pro} neutralizes MDA5-mediated type I IFN activation. Upon virus infection, MDA5

362 binds viral RNA and interacts with the adaptor protein, MAVS. This interaction leads to the

activation of downstream factors (TRAFs, TBK1, etc.). These activated factors cause IRF3 to

dimerize and then translocate into the nucleus, inducing an IFN- β response. Therefore, using

365	previously established experimental strategies (61), we asked whether CV-A16 3C ^{pro} could target
366	MDA5 and impair its immune activation functionalities. In contrast to type I IFN activation by
367	IRF3, TBK1, and IKK ϵ , which is resistant to CV-A16 3C ^{pro} , we observed that type I IFN
368	activation induced by MDA5-N (35, 62) was inhibited by CV-A16 3C ^{pro} (Fig. 6A). A CV-A16
369	3C ^{pro} catalytic site mutant (H40D) could still inhibit MDA5-N-induced IFN activation (Fig. 6A).
370	The MDA5-N protein level was not down-regulated in the presence of CV-A16 3C ^{pro} (Fig. 6B).
371	Endogenous MDA5 (Fig. 6C) and MAVS (Fig. 6D) expression was also not affected by CV-A16
372	3C ^{pro} . It has been reported that EV-A71 and EV-D68 3C ^{pro} could induce the cleavage of IRF7
373	(37, 39). We did not detect cleaved IRF7 product in the presence of CV-A16 3C ^{pro} (Fig. 6E).
374	We next examined whether CV-A16 3C ^{pro} has the ability to interact with MDA5. A Co-
375	immunoprecipitation (Co-IP) assay was performed as previously described (63) to evaluate
376	whether MDA5 associates with CV-A16 3C ^{pro} . As shown in Fig. 6F, CV-A16 3C ^{pro} (HA-tagged)
377	was immunoprecipitated with both the Myc-tagged MDA5 (lane 7) and MDA5-N (lane 9). In the
378	absence of Myc-tagged MDA5 or MDA5-N, CV-A16 3C ^{pro} was not detected (Fig. 6F, lane 6),
379	indicating the specificity of the assay system. CV-A16 3C ^{pro} (H40D) interaction with MDA5
380	(Fig. 6F, lane 8) or MDA5-N (lane 10) was also observed.
381	Although the CV-A16 3C ^{pro} catalytic site mutant (H40D) could still interact with MDA5,
382	mutations of surface exposed residues (Fig. 7A) of the N-terminal region of CV-A16 3C ^{pro}
383	disrupted its interaction with MDA5 (Fig. 7B). CV-A16 3C ^{pro} M also had impaired ability to
384	inhibit MDA5-N-induced type I IFN activation (Fig. 7C). MDA5 interaction with CV-A16 3C ^{pro}
385	was not disrupted by RNase treatment (Fig. 7D). CV-A16 3C ^{pro} V154S containing a mutation of
386	the C-terminal residue involved in RNA binding (33) also maintained the ability to inhibit
387	MDA5-N-induced type I IFN activation (Fig. 7E).

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

388

389

Ž	390	To answer this question, we carried out a Co-IP assay. HEK293T cells were transfected with
oted	391	vectors expressing Flag-MAVS along with Myc-MDA5-N, CV-A16 3C-HA, or a control vector.
cep	392	At 48 hours after transfection, cells were lysed and incubated with anti-Flag beads, followed by
Ă	393	analysis with a western blot. As expected, MAVS interacted with MDA5-N (Fig. 8A, lane 8). In
	394	the absence of MAVS, MDA5-N was not detected (Fig. 8A, lane 6), indicating the specificity of
	395	the assay. The results additionally showed that the association of MAVS and MDA5-N was
	396	disrupted by 3C ^{pro} in a dose dependent manner (Fig. 8A, lanes 9, 10 and Fig.8B). Immune
	397	activation triggered by MDA5-N was also disrupted by CV-A16 3C ^{pro} in a dose dependent
	398	manner (Fig. 8C). CV-A16 infection could inhibit MDA5 interaction with endogenous MAVS
, dgolo	399	(Fig. 8D). Interestingly, MDA5 dimerization was also inhibited by CV-A16 3C ^{pro} (Fig. 8E).
	400	Dimerization of MDA5 has been reported to be important for MDA5 interaction with MAVS
ourna	401	(62, 64, 65).
ň	402	Upon RNA virus infection, the RIG-I-like receptors RIG-I and MDA5 detect viral RNA
	403	through their CTD domains. The CARD domains of RIG-I and MDA5 are responsible for
	404	transducing signals to the downstream adaptor MAVS through CARD-CARD interactions(61,
	405	62, 66, 67).To investigate whether CV-A16 3C ^{pro} also antagonizes RIG-I-induced MAVS
	406	activation in the RLR pathway, we performed an IFN- β luciferase assay in HEK293T cells. A
	407	RIG-IN expression vector, which includes the caspase recruitment domain, was employed (66

ration triggered by MDA5-N was also disrupted by CV-A16 3C ^{pro} in a dose dependent
ner (Fig. 8C). CV-A16 infection could inhibit MDA5 interaction with endogenous MAVS
8D). Interestingly, MDA5 dimerization was also inhibited by CV-A16 3C ^{pro} (Fig. 8E).
erization of MDA5 has been reported to be important for MDA5 interaction with MAVS
64, 65).
pon RNA virus infection, the RIG-I-like receptors RIG-I and MDA5 detect viral RNA
ugh their CTD domains. The CARD domains of RIG-I and MDA5 are responsible for
educing signals to the downstream adaptor MAVS through CARD-CARD interactions(61,
56, 67).To investigate whether CV-A16 3C ^{pro} also antagonizes RIG-I-induced MAVS
vation in the RLR pathway, we performed an IFN- β luciferase assay in HEK293T cells. A
-IN expression vector, which includes the caspase recruitment domain, was employed (66,

MDA5 binds viral RNA and interacts with the adaptor protein MAVS to trigger immune

activation. Next, we asked whether CV-A16 3C^{pro} can impair MAVS association with MDA5.

68). As illustrated in Fig. 9A, CV-A16 3C^{pro} could significantly suppress RIG-IN-mediated IFN-408

- β activation in a dose dependent manner. Expression of $3C^{pro}$ impaired the interaction between 409
- MAVS and RIG-IN (Fig. 9B). In addition, the RIG-IN protein level was not down-regulated in 410

411	the presence of 3C ^{pro} . The association of MAVS and RIG-IN was disrupted by CV-A16 3C ^{pro} in
412	a dose dependent manner (Figs. 9B and C).
413	CV-A16 3C ^{pro} interacted with both RIG-I (Fig. 10B) and RIG-IN (Fig. 10B). Its interaction
414	with RIG-I was not impaired by RNase treatment (Fig. 10C). Like wild-type CV-A16 3C ^{pro} , the
415	CV-A16 3C ^{pro} H40D mutant maintained the ability to inhibit RIG-IN-triggered immune
416	activation (Fig. 10A) and could still interact with RIG-I (Fig. 10B, lane 8) and RIG-IN (Fig. 10B
417	lane 10). Also, the H40D mutant could still inhibit RIG-IN interaction with MAVS (Fig. 10D),
418	similar to its ability to inhibit MDA5-N interaction with MAVS (Fig. 10E). Together, these
419	results indicate that CV-A16 3C ^{pro} targets MDA5 and RIG-I, culminating in inactivation of the
420	IFN- β induction pathway. $3C^{pro}$ failed to block IFN- β activation mediated by TBK1 and
421	downstream factors (Fig. 5C). This finding indicates that 3C ^{pro} probably acts upstream of TBK1
422	in the RIG-I-RLR pathway and that RIG-I, like MDA5, is a target of 3C ^{pro} .
423	3 C ^{pro} from EV-D68 and CV-A6 neutralizes MDA5-mediated type I IFN activation. Direct
424	targeting of MDA5 by the Picornaviridae family of viruses has not been widely reported
425	previously. To further investigate whether 3C proteases from other enterovirus species also
426	possess the ability to interact with MDA5 and affect its function, the expression vectors for EV-
427	A71, EV-D68, CV-A6, and CV-B3 3C ^{pro} were constructed and compared. Interaction of 3C ^{pro}
428	with MDA5-N was first examined by Co-IP experiments. The Co-IP results (Fig.11A) indicated
429	that, similar to those for CV-A16 3C ^{pro} , 3C ^{pro} from EV-D68 and CV-A6 also interacted with
430	MDA5-N. At the same time, EV-A71 and CV-B3 3C ^{pro} interacted with MDA5-N poorly (Fig.
431	11A).
432	The level of MDA5-N was lower in the presence of EV-D68 and CV-A6 3C ^{pro} (Fig.11A)

To determine whether this was due to the protease activity of these 3C^{pro}, we constructed CV-A6

434	and EV-D68 3C protease active site mutants (H40D). The reduced levels of MDA5-N were still
435	noted with these mutants when compared to the controls (Figs. 11B and C). Thus, it is unlikely
436	that the reduced levels of MDA5-N by CV-A6 and EV-D68 3C ^{pro} are due to protease digestion.
437	Future studies will be required to determine the mechanism of MDA5 reduction by CV-A6 and
438	EV-D68 3C ^{pro} . However, despite lower levels of MDA5-N in the presence of CV-A6 and EV-
439	D68 3C ^{pro} (Fig. 11A, lanes 5 and 6) when compared to the control sample (Fig. 11A, lane 1), co-
440	IP of MDA5-N with CV-A6 and EV-D68 3C ^{pro} was still detected (Fig. 11A, lanes 11 and 12) but
441	not in the control sample (lane 7).
442	To address the question of whether 3C ^{pro} from EV-D68 and CV-A63C ^{pro} could also
443	antagonize MDA5-mediated IFN- β activation, we performed an IFN- β luciferase assay in
444	HEK293T cells. CV-A6 (Fig. 11D) and EV-D68 (Fig. 11E) 3C ^{pro} efficiently suppressed MDA5-
445	N-induced IFN- β promoter activity. Collectively, our data suggest that disabling MDA5 and
446	MAVS interaction through the activity of 3C proteases may be a common strategy used by a
447	variety of enterovirus species.
448	3C ^{pro} from CV-A16, CV-A6, and EV-D68 targets TAK1 to impair SeV-triggered NF-кВ
449	response. As indicated in Fig. 2B, CV-A16 virus can also block NF-KB activation after SeV
450	infection. In fact, CV-A16 $3C^{pro}$ alone can potently suppress NF- κ B activation after SeV
451	infection (Fig. 12A, lanes 3 and 4). Endogenous NF-kB-activated IKB (Fig. 12B) and IL-8 (Fig.
452	12C) mRNA levels were also suppressed by CV-A16 3C ^{pro} after SeV infection. Several studies
453	have demonstrated that TAK1 is a key player in NF-KB activation ((34, 69)). In response to
454	interleukin-1, tumor necrosis factor- α , and toll-like receptor agonists, it mediates the activation
455	of NF-κB, c-Jun N-terminal kinase (JNK), and p38 pathways (69). In order to assess whether
456	TAK1 is the target of CV–A16 $3C^{pro}$ in the NF- κ B pathway, we examined TAK1 expression and

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

457	processing in the presence or absence of 3C ^{pro} in HEK293T cells. TAK1 was transfected with
458	different amounts of the 3C ^{pro} expression vector, and protein expression was detected by western
459	blot. Interestingly, TAK1 cleavage products were induced by CV-A16 3C ^{pro} expression (Fig.
460	12D, lanes 2 and 3) compared with the control (Fig. 12D, lane 1). A TAK1-related smaller
461	protein band around 45KD was detected in the presence of CV-A16 3C ^{pro} . To further evaluate
462	whether 3C ^{pro} -induced TAK1 cleavage is protease activity dependent, we examined CV-A16
463	3C ^{pro} H40D versus wild type 3C ^{pro} . As shown in Fig. 12D (lanes 4 and 5), the appearance of the
464	cleaved TAK1 fragment was not detected in the presence of the CV-A16 3C ^{pro} H40D mutant.
465	Thus, the protease activity of CV-A16 3C ^{pro} is required for TAK1 cleavage. At the same time,
466	the ability of the $3C^{pro}$ H40D mutant to suppress NF- κ B activation after SeV infection was also
467	impaired (Fig. 12A, lanes 5 and 6). The ability to cleave TAK1 was also observed for the $3C^{pro}$
468	from EV-D68 (Fig. 12F) and CV-A6 (Fig. 12G). Similarly, the 3C ^{pro} from EV-D68 and CV-A6
469	suppressed NF-κB activation after SeV infection (Fig. 12E).
470	3C ^{pro} from CV-A16, CV-A6, and EV-D68 inhibits TLR3-mediated NF-кВ response. In
471	addition to the RLR pathway, TLR3 detection of the RNA component of RNA viruses also
472	triggers NF- κ B activation. Ectopic expression of TLR3 in HEK293T cells led to NF- κ B
473	activation in the presence of poly I:C (Fig. 13A, lane 2). CV-A16 3C ^{pro} suppressed TLR3-
474	triggered NF-κB activation (Fig. 13A, lane 3). In contrast, the ability of the CV-A16 3C ^{pro} H40D
475	mutant to suppress TLR3-triggered NF-κB activation was impaired (Fig. 13A, lane 4). Cleavage
476	of endogenous TAK1 could be detected in the presence of CV-A16 3C ^{pro} (Fig. 13B). CV-A16
477	infection could also trigger TAK cleavage (Fig. 13C). The 3C ^{pro} from EV-D68 and CV-A6 also
478	suppressed TLR3-triggered NF-κB activation (Fig. 13D). CV-A6 3C ^{pro} H40D (Fig. 13E) or EV-

Σ

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

479	D68 3C ^{pro} H40D (Fig. 13F) mutants were not able to cleave TAK1, unlike wild-type 3C ^{pro} . These
480	mutants also had impaired ability to suppress TLR3-triggered NF-κB activation (Fig. 13D).
481	
482	
483	
484	
485	
486	
487	
488	
489	
490	
491	
492	
493	
494	
495	
496	
497	
498	
499	
500	
501	

 $\overline{\leq}$

502

Accepted Manuscript Posted Online

DISCUSSION

503	
504	In this study, we evaluated the role of 3C ^{pro} in viral evasion of host innate immune
505	responses for several poorly studied enteroviruses and coxsackieviruses, including CV-A16, CV-
506	A6, and EV-D68. In a systematic evaluation, we observed that CV-A16, CV-A6, and EV-D68
507	3C ^{pro} could block immune activation triggered by the RNA virus SeV (Fig. 4). Furthermore, CV-
508	A16, CV-A6, and EV-D68 3C ^{pro} inhibited IRF3 phosphorylation after SeV infection (Fig. 4). At
509	the same time, CV-A16, CV-A6, and EV-D68 3C ^{pro} did not block type I IFN activation induced
510	by TBK1 or IKKE downstream factors (Fig. 5). Instead, CV-A16 (Fig. 6), CV-A6, and EV-D68
511	(Fig. 10) 3C ^{pro} directly interferes with MDA5-MAVS functional signaling.
512	CV-A16 $3C^{pro}$ impaired MDA5-CARD-induced IFN- β activation in a dose dependent
513	manner (Fig. 6). CV-A16 3C ^{pro} binds to MDA5 (Fig. 6) and disrupts its interaction with MAVS
514	(Fig. 8). In a manner distinct from other RNA viruses (51, 54), CV-A16 3C ^{pro} suppressed MDA5-
515	triggered type I IFN activation without reducing MDA5 (Fig. 6C) or MAVS expression (Fig.
516	6D). The interaction between CV-A16 3C ^{pro} and MDA5 was not affected by RNase treatment
517	(Fig. 7). Mutation of the protease active site of CV-A16 3C ^{pro} also did not abolish its interaction
518	with MDA5 (Fig. 6). On the other hand, mutations of N-terminal surface exposed amino acids
519	inhibited its interaction with MDA5 (Fig. 7). To our knowledge, this is the first example that the
520	3C protein of the <i>Picornaviridae</i> family of viruses interfering with MDA5-MAVS interaction to
521	abrogate type I IFN induction.
522	The ability to interact with MDA5 was also evaluated for various enteroviruses and
523	coxsackieviruses linked to HFMD and pediatric respiratory disease. We observed the interaction

between MDA5 and the 3C^{pro} from CV-A6 and EV-D68 (Fig. 11). Like CV-A16, 3C^{pro} from

Journal of Virology

525

526	the other hand, we did not detect an interaction between 3C ^{pro} from CV-B3 or EV-A71 and
527	MDA5 (Fig. 11). Whether disruption of MDA5 function by the 3C ^{pro} is seen among other diverse
528	Picornaviridae is a question that requires further investigation.
529	MDA5 is a critical component in the host RLR pathway. Several studies using MDA5 ^{-/-}
530	knockout mice have demonstrated that MDA5 signaling is critical for type-I IFN induction after
531	virus infection (70, 71). MDA5-deficient mice have increased susceptibility to lethal infection
532	induced by poliovirus (70, 71). It is interesting to note that EV-A71 3C ^{pro} has been reported not
533	to interfere with MDA5-mediated IFN restriction (35). These results are consistent with our
534	observation that EV-A71 3C ^{pro} did not interact with MDA5 (Fig. 11). It is possible that EV-A71
535	and CV-B3 3C proteases use different strategies to neutralize IFN- β activation mediated by
536	MDA5. For instance, CV-B3 3C protein targets MAVS (49) and EV-A71 3C protein targets IRF7
537	(35) in the RLR pathway to impair MDA5 induced IFN β activation.
538	In addition to type I IFN activation, SeV infection also triggers NF-kB activation through
539	TAK1. We have demonstrated that TAK1 was also targeted by CV-A16 3C ^{pro} (Fig. 12). CV-A16
540	3C ^{pro} expression resulted in TAK1 cleavage, and this function was blocked by a CV-A16 3C ^{pro}
541	active site (H40D) mutation (Fig. 12). Consequently, NF-kB activation triggered by SeV
542	infection was inhibited by CV-A16 3C ^{pro} but not the mutant 3C ^{pro} H40D (Fig. 12). We also
543	observed both CV-A6 and EV-D68 $3C^{pro}$ harbor the same ability to diminish NF- κ B signal by
544	targeting TAK1 (Fig. 12). The protease active site was also important for CV-A6 and EV-D68
545	3C ^{pro} to diminish NF-кB signal by cleaving TAK1 (Fig. 12).
546	Apart from the RLR pathway, TLRs are also critical for detecting the RNA component of
547	RNA viruses. Among them, TLR3 is one of the essential TLRs for sensing invading viral RNA.

CV-A6 and EV-D68 could efficiently antagonize MDA5-induced IFN-β activation (Fig. 11). On

 \sum

548	TLR3 can activate TAK1 and subsequently stimulate p38, JNK and NF-KB signals leading to
549	cytokine production. TLR3-triggered NF-кВ activation was inhibited by CV-A16, CV-A6, or
550	EV-D68 3C ^{pro} but not their H40D mutants (Fig. 13). The cleaved fragment of TAK1 was around
551	45KD. As a result, the integrity of TAK1 functional domains was destroyed. The N-terminal
552	fragment of TAK1 includes the TAB1 binding and kinase domains which are critical for TAK1
553	activation. The C-terminal fragment of TAK1 includes the TAB2/3 binding domain which is
554	necessary for the activation of downstream IKK kinase (IKK β , IKK α). Thus, the separation of
555	the N-terminal and C-terminal domains of TAK1 by CV-A16, CV-A6, or EV-D68 3C ^{pro} will lead
556	to the disruption of host RLR and TLR pathways. In addition to innate immune responses, TAK1
557	plays a central role in host adaptive immunity. T cell receptor (TCR) ligation leads to TAK1-
558	mediated activation of both NF-kB and JNK, which is required for the development and
559	maturation of T cells. CV-A16 has been shown to infect T cells (72). In light of impaired NF-kB
560	activation by 3C ^{pro} targeting TAK1, CV-A16 may interfere with T cell activation and maturation
561	in vivo. The interplay between CV-A16 infection and adaptive immunity should be studied in the
562	future.
563	During virus infection, host cells utilize different strategies to combat virus invasion.
564	Viruses have also evolved sophisticated mechanisms to subvert host immune responses. Overall,
565	we showed in this study that 3C ^{pro} proteins of CV-A16, CV-A6, and EV-D68 utilize novel tactics
566	to subvert host innate immune responses by targeting key factors in the RLR and TLR pathways.
567	This information should contribute to our understanding of the pathogenesis of CV-A16, CV-A6,

- and EV-D68 infection. Furthermore, recognition of the critical role of this protease in the
- pathogenesis of CV-A16, CV-A6, and EV-D68 infection and the success of protease inhibitors in

 $\overline{\leq}$

570 the treatment of other viral infections provides a foundation for development of new therapeutic

agents to treat HFMD and pediatric respiratory disease.

572

573 ACKNOWLEDGMENTS

574 We thank ChunyanDai, Xin Liu, and Zhaolong Li for technical assistance, Tao Wang and Jinhua

575 Yang for critical reagents. This work was supported in part by funding from the Chinese

576 Ministry of Science and Technology (number 2012CB911100 and number 2013ZX0001-005)

and the Chinese Ministry of Education (number IRT1016), the Key Laboratory of Molecular

578 Virology, Jilin Province (20102209), the China Scholarship Council to Yajuan Rui

579 (201406170086).

580 Author contributions: Xiao-Fang Yu designed the overall project. Yajuan Rui, Jiaming Su,

- 581 Hong Wang, and Junliang Chang performed the experiments and Xiao-Fang Yu, Richard
- 582 Markham, Shaohua Wang, Yong Cai, Wenwen Zheng, Wenyan Zhang, James T. Gordy, Wei
- 583 Wei, and Wei Kong analyzed the data. Xiao-Fang Yu, James T. Gordy, Richard Markham, and
- 584 Yajuan Rui wrote the paper with help from other authors.

585

- 586
- 587
- 588
- 589
- 590
- 591

Accepted Manuscript Posted Online

Journal of Virology

592 **REFERENCES**

593	1.	McMinn PC. 2002. An overview of the evolution of enterovirus 71 and its clinical and public health
594		significance. FEMS microbiology reviews 26: 91-107.
595	2.	Qiu J. 2008. Enterovirus 71 infection: a new threat to global public health? The Lancet. Neurology 7:868-
596		869.
597	3.	Bendig JW, Fleming DM. 1996. Epidemiological, virological, and clinical features of an epidemic of hand,
598		foot, and mouth disease in England and Wales. Communicable disease report. CDR review 6:R81-86.
599	4.	Yen FB, Chang LY, Kao CL, Lee PI, Chen CM, Lee CY, Shao PL, Wang SC, Lu CY, Huang LM. 2009.
600		Coxsackieviruses infection in northern Taiwanepidemiology and clinical characteristics. Journal of
601		microbiology, immunology, and infection = Wei mian yu gan ran za zhi 42: 38-46.
602	5.	Wang CY, Li Lu F, Wu MH, Lee CY, Huang LM. 2004. Fatal coxsackievirus A16 infection. The Pediatric
603		infectious disease journal 23: 275-276.
604	6.	Wright HT, Jr., Landing BH, Lennette EH, Mc AR. 1963. Fatal infection in an infant associated with
605		Coxsackie virus group A, type 16. The New England journal of medicine 268: 1041-1044.
606	7.	2014. Enterovirus D68: the unexpected guest. Lancet Infectious Diseases 14:1023-1023.
607	8.	Brown BA, Nix WA, Sheth M, Frace M, Oberste MS. 2014. Seven Strains of Enterovirus D68 Detected in
608		the United States during the 2014 Severe Respiratory Disease Outbreak. Genome Announcements 2.
609	9.	Selvarangan R, Gerber SI, Midgley CM, Jackson MA, Turabelidze G, Obringer E, Johnson D, Giles BL, Patel
610		A, Echols F. 2014. Severe Respiratory Illness Associated with Enterovirus D68—Missouri and Illinois, 2014.
611		American Journal of Transplantation Official Journal of the American Society of Transplantation & the
612		American Society of Transplant Surgeons 14:2662-2663.
613	10.	Nelson R. 2014. Outbreaks of enterovirus D68 continue across the USA. Lancet Respiratory Medicine
614		2 :791-791.
615	11.	Messacar K, Schreiner TL, Maloney JA, Wallace A, Ludke J, Oberste MS, Nix WA, Robinson CC, Glodé MP,
616		Abzug MJ. 2015. A cluster of acute flaccid paralysis and cranial nerve dysfunction temporally associated
617		with an outbreak of enterovirus D68 in children in Colorado, USA. Lancet 385: 1662-1671.
618	12.	Oermann CM, Schuster JE, Conners GP, Newland JG, Selvarangan R, Jackson MA. 2015. Enterovirus D68.
619		A Focused Review and Clinical Highlights from the 2014 U.S. Outbreak. Ann Am Thorac Soc 12 .
620	13.	Sinclair C, Gaunt E, Simmonds P, Broomfield D, Nwafor N, Wellington L, Templeton K, Willocks L,
621		Schofield O, Harvala H. 2014. Atypical hand, foot, and mouth disease associated with coxsackievirus A6
622		infection, Edinburgh, United Kingdom, January to February 2014. Euro surveillance : bulletin Europeen sur
623		les maladies transmissibles = European communicable disease bulletin 19: 20745.
624	14.	Chong JH, Aan MK. 2014. An atypical dermatologic presentation of a child with hand, foot and mouth
625		disease caused by coxsackievirus A6. The Pediatric infectious disease journal 33: 889.
626	15.	Downing C, Ramirez-Fort MK, Doan HQ, Benoist F, Oberste MS, Khan F, Tyring SK. 2014. Coxsackievirus
627		A6 associated hand, foot and mouth disease in adults: clinical presentation and review of the literature.
628		Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology
629		60: 381-386.
630	16.	Ben-Chetrit E, Wiener-Well Y, Shulman LM, Cohen MJ, Elinav H, Sofer D, Feldman I, Marva E, Wolf DG.
631		2014. Coxsackievirus A6-related hand foot and mouth disease: skin manifestations in a cluster of adult
632		patients. Journal of clinical virology : the official publication of the Pan American Society for Clinical
633		Virology 59: 201-203.
634	17.	Feder HM, Jr., Bennett N, Modlin JF. 2014. Atypical hand, foot, and mouth disease: a vesiculobullous
635		eruption caused by Coxsackie virus A6. The Lancet. Infectious diseases 14: 83-86.
636	18.	Kawai T, Akira S. 2006. Innate immune recognition of viral infection. Nature immunology 7:131-137.
637	19.	Takeuchi O, Akira S. 2007. Recognition of viruses by innate immunity. Immunological reviews 220:214-
638		224.
639	20.	Wu J, Chen ZJ. 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annual review of
640		immunology 32: 461-488.
641	21.	Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M,
642		Endres S, Hartmann G. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314:994-997.

643	22.	Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C. 2006. RIG-I-mediated
644		antiviral responses to single-stranded RNA bearing 5 -phosphates. Science 314 :997-1001.
645	23.	Reikine S, Nguyen JB, Modis Y. 2014. Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5.
646		Frontiers in immunology 5:342.
647	24.	Feng Q, Langereis MA, Olagnier D, Chiang C, van de Winkel R, van Essen P, Zoll J, Hiscott J, van
648		Kuppeveld FJ. 2014. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral
649		response via RIG-I activation. PloS one 9: e95927.
650	25.	Feng Q, Hato SV, Langereis MA, Zoll J, Virgen-Slane R, Peisley A, Hur S, Semler BL, van Rij RP, van
651		Kuppeveld FJ. 2012. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected
652		cells. Cell reports 2: 1187-1196.
653	26.	Takahasi K, Kumeta H, Tsuduki N, Narita R, Shigemoto T, Hirai R, Yoneyama M, Horiuchi M, Ogura K,
654		Fujita T, Inagaki F. 2009. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains:
655		identification of the RNA recognition loop in RIG-I-like receptors. The Journal of biological chemistry
656		284 :17465-17474.
657	27.	Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S. 2005. IPS-1, an
658		adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature immunology 6: 981-988.
659	28.	Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J. 2005. Cardif is an
660		adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167-1172.
661	29.	Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial
662		antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669-682.
663	30.	Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ. 2015. Phosphorylation of
664		innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347 :aa2630.
665	31.	Hayden MS, Ghosh S. 2008. Shared principles in NF-kappaB signaling. Cell 132:344-362.
666	32.	Li ML, Hsu TA, Chen TC, Chang SC, Lee JC, Chen CC, Stollar V, Shih SR. 2002. The 3C protease activity of
667		enterovirus 71 induces human neural cell apoptosis. Virology 293: 386-395.
668	33.	Shih SR, Chiang C, Chen TC, Wu CN, Hsu JT, Lee JC, Hwang MJ, Li ML, Chen GW, Ho MS. 2004. Mutations
669		at KFRDI and VGK domains of enterovirus 71 3C protease affect its RNA binding and proteolytic activities.
670		Journal of biomedical science 11: 239-248.
671	34.	Lei X, Han N, Xiao X, Jin Q, He B, Wang J. 2014. Enterovirus 71 3C inhibits cytokine expression through
672		cleavage of the TAK1/TAB1/TAB2/TAB3 complex. Journal of virology 88: 9830-9841.
673	35.	Lei X, Liu X, Ma Y, Sun Z, Yang Y, Jin Q, He B, Wang J. 2010. The 3C protein of enterovirus 71 inhibits
674		retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon
675		responses. Journal of virology 84: 8051-8061.
676	36.	Lei X, Sun Z, Liu X, Jin Q, He B, Wang J. 2011. Cleavage of the adaptor protein TRIF by enterovirus 71 3C
677		inhibits antiviral responses mediated by Toll-like receptor 3. Journal of virology 85: 8811-8818.
678	37.	Lei X, Xiao X, Xue Q, Jin Q, He B, Wang J. 2013. Cleavage of interferon regulatory factor 7 by enterovirus
679		71 3C suppresses cellular responses. Journal of virology 87: 1690-1698.
680	38.	Wang H, Lei X, Xiao X, Yang C, Lu W, Huang Z, Leng Q, Jin Q, He B, Meng G, Wang J. 2015. Reciprocal
681		Regulation between Enterovirus 71 and the NLRP3 Inflammasome. Cell reports 12: 42-48.
682	39.	Xiang Z, Liu L, Lei X, Zhou Z, He B, Wang J. 2016. 3C Protease of Enterovirus D68 Inhibits Cellular Defense
683		Mediated by Interferon Regulatory Factor 7. Journal of virology 90: 1613-1621.
684	40.	Xiang Z, Li L, Lei X, Zhou H, Zhou Z, He B, Wang J. 2014. Enterovirus 68 3C protease cleaves TRIF to
685		attenuate antiviral responses mediated by Toll-like receptor 3. Journal of virology 88:6650-6659.
686	41.	Fan Y, Mao R, Yu Y, Liu S, Shi Z, Cheng J, Zhang H, An L, Zhao Y, Xu X, Chen Z, Kogiso M, Zhang D, Zhang H,
687		Zhang P, Jung JU, Li X, Xu G, Yang J. 2014. USP21 negatively regulates antiviral response by acting as a RIG-
688		I deubiquitinase. The Journal of experimental medicine 211: 313-328.
689	42.	Reed LJ, Muench H. 1938. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS. American
690		Journal of Epidemiology 27.
691	43.	Strahle L, Garcin D, Le Mercier P, Schlaak JF, Kolakofsky D. 2003. Sendai virus targets inflammatory
692		responses, as well as the interferon-induced antiviral state, in a multifaceted manner. Journal of virology
693		77 :7903-7913.

Σ

694	44.	Lin R, Heylbroeck C, Pitha PM, Hiscott J. 1998. Virus-dependent phosphorylation of the IRF-3 transcription
695		factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation.
696		Molecular and cellular biology 18: 2986-2996.
697	45.	Lu J, Yi L, Zhao J, Yu J, Chen Y, Lin MC, Kung HF, He ML. 2012. Enterovirus 71 disrupts interferon signaling
698		by reducing the level of interferon receptor 1. Journal of virology 86: 3767-3776.
699	46.	Kräusslich HG, Nicklin MJ, Toyoda H, Etchison D, Wimmer E. 1987. Poliovirus proteinase 2A induces
700		cleavage of eucaryotic initiation factor 4F polypeptide p220. Journal of virology 61:2711-2718.
701	47.	Liebig HD, Seipelt J, Vassilieva E, Gradi A, Kuechler E. 2002. A thermosensitive mutant of HRV2 2A
702		proteinase: evidence for direct cleavage of eIF4GI and eIF4GII. Febs Letters 523: 53-57.
703	48.	Liebig HD, Ziegler E, Yan R, Hartmuth K, Klump H, Kowalski H, Blaas D, Sommergruber W, Frasel L,
704		Lamphear B, et al. 1993. Purification of two picornaviral 2A proteinases: interaction with eIF-4 gamma and
705		influence on in vitro translation. Biochemistry 32: 7581-7588.
706	49.	Mukherjee A, Morosky SA, Delorme-Axford E, Dybdahl-Sissoko N, Oberste MS, Wang T, Coyne CB. 2011.
707		The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic
708		signaling. PLoS pathogens 7 :e1001311.
709	50.	Barral PM, Sarkar D, Fisher PB, Racaniello VR. 2009. RIG-I is cleaved during picornavirus infection.
710		Virology 391: 171-176.
711	51.	Barral PM, Morrison JM, Drahos J, Gupta P, Sarkar D, Fisher PB, Racaniello VR. 2007. MDA-5 is cleaved in
712		poliovirus-infected cells. Journal of virology 81:3677-3684.
713	52.	Papon L, Oteiza A, Imaizumi T, Kato H, Brocchi E, Lawson TG, Akira S, Mechti N. 2009. The viral RNA
714		recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection. Virology
715		393: 311-318.
716	53.	Huang L, Liu Q, Zhang L, Zhang Q, Hu L, Li C, Wang S, Li J, Zhang Y, Yu H, Wang Y, Zhong Z, Xiong T, Xia X,
717		Wang X, Yu L, Deng G, Cai X, Cui S, Weng C. 2015. Encephalomyocarditis Virus 3C Protease Relieves TRAF
718		Family Member-associated NF-kappaB Activator (TANK) Inhibitory Effect on TRAF6-mediated NF-kappaB
719		Signaling through Cleavage of TANK. The Journal of biological chemistry 290: 27618-27632.
720	54.	Feng Q, Langereis MA, Lork M, Nguyen M, Hato SV, Lanke K, Emdad L, Bhoopathi P, Fisher PB, Lloyd RE,
721		van Kuppeveld FJ. 2014. Enterovirus 2Apro targets MDA5 and MAVS in infected cells. Journal of virology
722		88: 3369-3378.
723	55.	Wang B, Xi X, Lei X, Zhang X, Cui S, Wang J, Jin Q, Zhao Z. 2013. Enterovirus 71 protease 2Apro targets
724		MAVS to inhibit anti-viral type I interferon responses. PLoS pathogens 9: e1003231.
725	56.	Wang LC, Chen SO, Chang SP, Lee YP, Yu CK, Chen CL, Tseng PC, Hsieh CY, Chen SH. 2015. Enterovirus 71
726		Proteins 2A and 3D Antagonize the Antiviral Activity of Gamma Interferon via Signaling Attenuation.
727		89:7028-7037.
728	57.	Liu Y, Zhang Z, Zhao X, Yu R, Zhang X, Wu S, Liu J, Chi X, Song X, Fu L, Yu Y, Hou L, Chen W. 2014.
729		Enterovirus 71 inhibits cellular type I interferon signaling by downregulating JAK1 protein expression. Viral
730		immunology 27: 267-276.
/31	58.	Lei X, Xiao X, Wang J. 2016. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host
/32		Interaction. Viruses 8.
/33	59.	Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T.
/34		2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature immunology
/35	~ ~	4: 491-496.
/36	60.	Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. 2003. Triggering the interferon antiviral
/3/		response through an IKK-related pathway. Science 300 :1148-1151.
/38	61.	Xu L, Xiao N, Liu F, Ren H, Gu J. 2009. Inhibition of RIG-I and MDA5-dependent antiviral response by
/39		gClqR at mitochondria. Proceedings of the National Academy of Sciences of the United States of America
/40	62	
/41	62.	Jiang X, Kinch LN, Brautigam CA, Chen X, Du F, Grishin NV, Chen ZJ. 2012. Ubiquitin-induced
/42		oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity
/43		36:959-973.
/44	63.	Zhang W, Du J, Evans SL, Yu Y, Yu XF. 2012. T-cell differentiation factor CBF-beta regulates HIV-1 Vif-

mediated evasion of host restriction. Nature 481:376-379.

 \geq

745

64.	Berke IC, Modis Y. 2012. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding
	double-stranded RNA. The EMBO journal 31: 1714-1726.
65.	Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ. 2011. MAVS forms functional prion-like aggregates to
	activate and propagate antiviral innate immune response. Cell 146: 448-461.
66.	Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU. 2007.
	TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916-
	920.
67.	Pham AM, Santa Maria FG, Lahiri T, Friedman E, Marie IJ, Levy DE. 2016. PKR Transduces MDA5-
	Dependent Signals for Type I IFN Induction. PLoS pathogens 12 :e1005489.
8.	Wang S, Wang K, Lin R, Zheng C. 2013. Herpes simplex virus 1 serine/threonine kinase US3
~	nyperphosphorylates IRF3 and inhibits beta interferon production. Journal of virology 87:12814-12827.
59.	Dai L, Aye Thu C, Liu XY, XI J, Cheung PC. 2012. TAK1, more than just innate immunity. TOBMB life 64:825-
20	034. Abo V Euiii V Nagata N Takauchi O Akira S Ochiumi H Matcumata M Sava T Voika S 2012. Tha tall
, 0.	like recentor 3-mediated antiviral response is important for protection against policyirus infection in
	noliovirus recentor transgenic mice. Journal of virology 86 -185-194
71.	Wang JP. Cerny A. Asher DR. Kurt-Jones EA. Bronson RT. Finberg RW. 2010, MDA5 and MAVS mediate
	type I interferon responses to coxsackie B virus. Journal of virology 84:254-260.
72.	Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. 2009. Human P-selectin
	glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nature medicine 15 :794-797.

Σ

30

FIGURE LEGENDS 779

780

781	Figure 1. Type I interferon induces potent CV-A16 inhibition. (A) RD cells were untreated
782	(columns 1, 3) or treated with 1000U/mL of interferon $\alpha 2$ (columns 2, 4). After 12 hours, IFN- $\alpha 2$
783	treated or untreated RD cells were infected with equal amounts (MOI of 0.5) of CV-A16 virus
784	(columns 3, 4) or left uninfected (columns 1, 2). 72 hours later, cells were observed for
785	morphological changes and were photographed by light microscopy at 400X magnification. (B)
786	Total viral RNA was extracted from the treated RD cells listed above (Figure 1A). The viral RNA
787	levels of CV-A16 were evaluated by real-time PCR using SYBR green. Primers targeted CV-
788	A16 VP1 to monitor viral replication. GAPDH expression was used as a control. Data represent
789	the average of three independent experiments. The error bars indicate the SD of three
790	independent experiments. P values <0.05 were considered significant. (C) CV-A16 virus from
791	RD cells were collected at days 0, 1, 2, 3, and 4 after infection with or without IFN- α 2 treatment.
792	The virus titer was determined by CCID50.
793	
794	Figure 2. Type I interferon induces potent CV-A6 and EV-D68 inhibition. (A) RD cells were
795	untreated (column 1) or treated with 1000U/mL of interferon $\alpha 2$ (column 2). After 12 hours,
796	IFN- α 2 treated or untreated RD cells were infected with equal amounts (MOI of 0.5) of CV-A6
797	virus or EV-D68 virus (B). 96 hours later, cells were observed for morphological changes and
798	photographed by light microscopy at 400X magnification. CV-A16 virus (C) or EV-D68 virus
799	
155	(D) from RD cells were collected at days 0, 1, 2, 3, and 4 after infection with or without IFN- α 2
800	(D) from RD cells were collected at days 0, 1, 2, 3, and 4 after infection with or without IFN- α 2 treatment. The virus titer was determined by CCID50.

31

 \leq

 \leq

802	Figure 3. CV-A16, CV-A6, and EV-D68 suppress the type I IFN response triggered by RNA
803	virus infection. HEK293T cells were transfected with the pRL-TK plasmid and the IFN- β (A) or
804	NF- kB promoter (B) plus control plasmids or CV-A16 or EV-A71 infectious clone vectors for
805	24 hours. The cells were subsequently infected with SeV (20HA/mL) or left uninfected for 20
806	hours, and then cell lysates were assayed for luciferase activity. Data represent the average of
807	three independent experiments. The error bars indicate the SD of three replicates within one
808	experiment. P values <0.05 were considered significant. (C) HEK293T cells were infected with
809	CV-A16 virus (MOI of 0.5) or left uninfected. After the indicated time points, cells were
810	observed for CPE. HEK293T cells were transfected with the pRL-TK plasmid and the IFN- β (D)
811	or NF- κ B promoter (E) for 12 hours and were then infected with CV-A6 and EV-D68 virus
812	(MOI of 0.5) for 12 hours. The cells were subsequently infected with SeV (20HA/mL) or left
813	uninfected for 20 hours, and then cell lysates were assayed for luciferase activity. Data represent
814	the average of three independent experiments. The error bars indicate the SD of three replicates
815	within one experiment. P values <0.05 were considered significant.
816	

Figure 4. 3Cpro of CV-A16, CV-A6, and EV-D68 suppresses the SeV-induced type I IFN 817 response. HEK293T cells were transfected with empty vector, CV-A16 3C, or EV-A71 3C (A), 818 819 or with empty vector, CV-A6 3C, or EV-D68 3C (F), along with the pRL-TK plasmid and the IFN- β reporter. After 24 hours, cells were challenged with SeV (20HA/mL) or left uninfected for 820 821 20 hours and were followed for luciferase activity. Protein expression was detected by western 822 blot (B). Data represent the average of three independent experiments. The error bars indicate the SD of three replicates within one experiment. P values <0.05 were considered significant. (C) 823 HEK293T cells were transfected with empty vector, 150ng CV-A16 3C, and 450ng CV-A16 3C. 824

32

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

825	After 24 hours, cells were challenged with SeV (20HA/mL) or left uninfected for 20 hours. Then
826	the cells were harvested, and RNA was extracted to determine IFNB and ISG56 mRNA level by
827	quantitative real-time PCR. (D) HEK293T cells were transfected with the Flag-IRF3 plasmid
828	alone (lane 1), Flag-CV-A16 3C alone (lane 2), Flag-EV-A71 3C alone (lane 3), Flag-IRF3 plus
829	Flag-CV-A16 3C (lane 5), or Flag-IRF3 plus Flag-EV-A71 3C (lane 6). 24 hours after the
830	transfection, cells were treated with SeV (SeV+; 20HA/mL) or were left untreated (SeV-). 24
831	hours later, cells were analyzed by western blot with antibodies against Flag-IRF3, p-IRF3, Flag-
832	3C, or tubulin control. (E) HEK293T cells were transfected with 200ng CV-A16 2A (lane 3),
833	CV-A16 3C at two doses (150ng, 450ng) (lanes 4, 5), or 200ng 2A with 3C at two doses (150ng,
834	450ng) (lanes 6, 7). 24 hours after the transfection, cells were treated with SeV (SeV+;
835	20HA/mL) or were left untreated (SeV-). 24 hours later, cell lysates were assayed for luciferase
836	activity. (G) HEK293T cells were transfected with the Flag-IRF3 plasmid alone (lanes 1, 4) or in
837	combination with HA-EV-D68 3C (lanes 2, 5) or HA-CV-A6 3C (lanes 3, 6). 24 hours after the
838	transfection, cells were treated with SeV (SeV+; 20HA/mL) or were left untreated (SeV-). 24
839	hours later, cells were analyzed by western blot with antibodies against Flag-IRF3, p-IRF3, HA-
840	3C, or tubulin control.
841	
842	Figure 5. 3C ^{pro} of CV-A16, CV-A6, and EV-D68 inhibits type I interferon responses upstream of
843	IRF3 activation. HEK293T cells were transfected with IFN β -luc and IRF3-5D(A), IKK ϵ (C) or
844	TBK1 (D) together with control (pRL-TK), CV-A16 3C, CV-A6 3C, or EV-D68 3C expression
845	vectors. 36 hours after transfection, cells were assayed for luciferase activity. Data are

- 846 representative of three independent experiments. The error bars indicate the SD of three different
- experiments. P values <0.05 were considered significant. (B) CV-A16, CV-A6, and EV-D68 3C

 $\overline{\leq}$

protein expression was analyzed by western blot with HA antibody. Tubulin antibody was usedas a control.

850

851	Figure 6. CA16 $3C^{\text{pro}}$ neutralizes MDA5-mediated IFN- β activation. (A) HEK293T cells were
852	transfected with the pRL-TK plasmid and IFN-\beta-luc promoter reporter plus control plasmid (lane
853	1), Flag-MDA5-N alone (lane 2), Flag-MDA5-N plus three increasing doses of CV-A16 3C
854	(lanes 3-5), or Flag-MDA5-N plus three increasing doses of CV-A16 3C H40D (lanes 6-8). After
855	a 36 hour transfection, cells were assayed for luciferase activity and then analyzed by western
856	blot. Proteins were detected with the indicated antibodies. Tubulin antibody was used as a
857	control (B). Data are a representative of three independent experiments with triplicate samples.
858	The error bars indicated the SD of three different experiments. P values <0.05 were considered
859	significant. (C) HEK293T cells were transfected with two increasing doses of CV-A16 3C
860	plasmids (lanes 2, 3) or control vector (lane 1). 36 hours later, cells were harvested, and 3C-HA
861	along with endogenous MDA5 (C) or MAVS (D) proteins were analyzed by western blot.
862	Tubulin antibody was used as a control. (E) HEK293T cells were transfected with IRF7-Flag and
863	two increasing doses of CV-A16 3C dose or negative control. 36 hours later, proteins were
864	detected with the indicated antibodies by western blot. (F) HEK293T cells were co-transfected
865	with Myc-MDA5 (lanes 2, 3) or Myc-MDA5-N (lanes 4, 5), and with control vector (lane 1),
866	HA-CV-A16 3C (lanes 2, 4), or with HA-CV-A16 3C H40D (lanes 3, 5). 48 hours after
867	transfection, cell lysates were immunoprecipitated with anti-Myc beads. Western blot was used
868	to analyze protein expression.
869	Figure 7. The N-terminal domain of CV-A16 is critical for its function. (A) Here is a schematic

of CV-A16's N-terminal amino acids and the designed mutant. (B) HEK293T cells were

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

871	transfected with MDA5-N-Myc and HA-CV-A16 3C (lane 2) or its mutant HA-CV-A16 3C-M
872	(lane 3). At 48 hours after transfection, cells were harvested and cell lysates were incubated with
873	anti-HA beads overnight. Protein expression was detected by the indicated antibodies by western
874	blot. Tubulin antibody was used as a control. (C) HEK293T cells were transfected with the pRL-
875	TK plasmid and IFNβ-luc promoter reporter plus control plasmid (lane 1), MDA5-N-Myc (lanes
876	2-7), or different amounts of HA-3C (lanes 3-5) or HA-3C-M (lanes 6, 7) expression vectors. 36
877	hours after transfection, cell lysates were assayed for luciferase activity. Data are a representative
878	of three independent experiments. (D) HEK293T cells were transfected with MDA5-Myc and
879	HA-CV-A16 3C (lanes 2, 3) or HA-CV-A16 3C alone (lane 1). At 48 hours after transfection,
880	cells were harvested, and cell lysates were treated with RNase (lane 3) or left untreated (lanes 1,
881	2) and incubated with anti-Myc beads overnight. Protein expression was detected by western blot
882	using the indicated antibodies. Tubulin antibody was used as a control. (E) HEK293T cells were
883	transfected with pRL-TK plasmid and IFNβ-luc promoter reporter plus control plasmid (lane 1),
884	MDA5-N-Myc alone (lane 2) or cotransfected with different amounts of HA-3C (lanes 3-5) or
885	HA-3C V154S (lanes 6-8) expression vectors. 36 hours after transfection, cell lysates were
886	assayed for luciferase activity. Data are a representative of three independent experiments. The
887	error bars indicate the SD of three different experiments. P values <0.05 were considered
888	significant.
880	Figure 8 CV-A163C disturts MAVS and MDA5-N interaction (A) HEK203T calls were
009	i gure 6. C + 1110 5C distupis (11175) and 111215-14 interaction. (11) 11212251 cells well
890	transfected with plasmids encoding MDA5-N-Myc (lanes 1,3,4,5), MAVS-Flag (lanes 2-5), HA-

- 3C (lanes 1,2,4,5) or control vector (lanes 1–3). At 48 hours after transfection, cells were
- 892 harvested, and cell lysates were incubated with anti-Flag beads overnight. Protein expression was
- 893 detected by western blot utilizing the indicated antibodies. Tubulin antibody was used as a

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

Myc (lanes 3-6), or different amounts (50ng,150ng,450ng) of HA-3C (lanes 2, 4-6) expression
vector. 36 hours after transfection, cell lysates were assayed for luciferase activity. Data are a
representative of three independent experiments. The error bars indicate the SD of three different
experiments. P values <0.05 were considered significant. (D) HEK293T cells were transfected
with MDA5-N-Flag or were left untreated for 12 hours and then were infected with an increasing
MOI (2,3) of CV-A16 virus or left untreated. 20 hours later, cells were harvested, and cell lysates
were incubated with anti-Flag beads overnight. Protein expression was detected by western blot
using the indicated antibodies. Tubulin antibody was used as a control. (E) HEK293T cells were
transfected with plasmids encoding MDA5-N-Myc (lanes 1, 3, 4), MDA5-N-Flag (lanes 2–4),
HA-3C (lanes 1, 2, 4), or control vector (lanes 1–3). At 48 hours after transfection, cells were
harvested and cell lysates were incubated with anti-Flag beads overnight. Protein expression was
detected by western blot using the indicated antibodies. Tubulin antibody was used as a control.

Figure 9. CV-A16 3C^{pro} disrupts the MAVS and RIG-IN complex. (A) HEK293T cells were

912 transfected with the pRL-TK plasmid and IFN- β -luc promoter reporter plus control plasmid (lane

control. (B) ImageJ software (NIH) was used to quantitate protein band intensities, and the value

of MDA5-N that co-precipitated with MAVS in the absence of 3C was set to 1. A representative

with pRL-TK plasmid and IFN-β-luc promoter reporter plus control plasmid (lane 1), MDA5-N-

of three independent experiments is shown in this figure. (C) HEK293T cells were transfected

- 1), RIG-IN-Myc (lanes 3-6) or different amounts of HA-3C (lanes 2, 4-6) expression vectors. At
- 914 36 hours after transfection, cell lysates were assayed for luciferase activity. Data are
- 915 representative of three independent experiments. The error bars indicate the SD of three different
- 916 experiments. P values <0.05 were considered significant. (B) HEK293T cells were transfected

917

918	2, 4, 5), or control vector (lanes 1–3). 48 hours after transfection, cells were harvested, lysed, and
919	then incubated with anti-Flag beads overnight. Protein expression was analyzed by western blot
920	using the indicated antibodies. Tubulin antibody was used as a control. (C) ImageJ software
921	(NIH) was used to quantitate protein band intensities, and the value of RIG-IN co-precipitated
922	with MAVS in the absence of 3C was set to 1. A representative of three independent experiments
923	is shown in this figure.
924	
925	Figure 10. CV-A16 3C ^{pro} disruption of the MAVS and RIG-IN complex is independent of
926	protease activity. (A) HEK293T cells were transfected with the pRL-TK plasmid and IFN- β -luc
927	promoter reporter plus control plasmid (lane 1), RIG-IN-Myc (lane 2) alone or cotransfected
928	with different amounts of HA-3C (lanes 3-5) or HA-3C H40D (lanes 6-8) expression vectors. At
929	36 hours after transfection, cell lysates were assayed for luciferase activity. Protein expression
930	was detected by western blot using indicated antibodies. Data are representative of three
931	independent experiments. The error bars indicate the SD of three different experiments. P values
932	<0.05 were considered significant. (B) HEK293T cells were transfected with RIG-I-Flag (lanes
933	2, 3) or RIG-IN-Flag (lanes 4, 5) in combination with control vector, HA-CV-A16 3C (lanes 2,
934	4), or with HA-CV-A16 3C H40D (lanes 3, 5). 48 hours after transfection, cell lysates were
935	immunoprecipitated with anti-Flag beads. Western blot was used to analyze protein expression.
936	(C) HEK293T cells were transfected with RIG-I-Flag and HA-CV-A16 3C (lanes 2, 3) or HA-
937	CV-A16 3C alone (lane 1). At 48 hours after transfection, cells were harvested, and cell lysates
938	were treated with RNase (lane 3) or were left untreated (lane 2). Cell lysates were then incubated
939	with anti-Flag beads overnight. Protein expression was detected by western blot using the

with plasmids encoding RIG-IN-Myc (lanes 1, 3-5), MAVS-Flag (lanes 2-5), HA-3C (lanes 1,

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

ot Po		
scrip	940	indicated antibodies. Tubulin antibody was used as a control. (D) HEK293T cells were
nuc	941	transfected with plasmids encoding RIG-IN-Myc with MAVS-Flag (lanes 2-5), HA-3C H40D
Ž	942	(lanes 1, 3, 4, 5) or control vector (lane 2). 48 hours after transfection, cells were harvested,
oteo	943	lysed, and then incubated with anti-Flag beads overnight. Protein expression was analyzed by
cep	944	western blot using the indicated antibodies. Tubulin antibody was used as a control. (E)
Ă	945	HEK293T cells were transfected with plasmids encoding MDA5-N-Myc with MAVS-Flag
	946	(lanes 2-5), HA-3C H40D (lanes 1, 3, 4, 5), or control vector (lane 2). 48 hours after transfection,
	947	cells were harvested, lysed, and then incubated with anti-Flag beads overnight. Protein
	948	expression was analyzed by western blot using the indicated antibodies. Tubulin antibody was
	949	used as a control.
	950	
, dogy	951	Figure 11. $3C^{pro}$ from CV-A6 and EV-D68 neutralizes MDA5-mediated IFN- β activation, and
of Vir	952	enterovirus 3C proteases selectively associate with MDA5-N. (A) HEK 293T cells were
ournal	953	transfected with plasmids encoding MDA5-N-Myc and HA-3C (lanes 2-6) from different species
	954	of enterovirus or control vector (lane 1). At 48 hours after transfection, cells were harvested,
	955	lysed and then incubated with anti-HA beads overnight. Protein expression was analyzed by

951	Figure 11. $3C^{\text{pro}}$ from CV-A6 and EV-D68 neutralizes MDA5-mediated IFN- β activation, and
952	enterovirus 3C proteases selectively associate with MDA5-N. (A) HEK 293T cells were
953	transfected with plasmids encoding MDA5-N-Myc and HA-3C (lanes 2-6) from different species
954	of enterovirus or control vector (lane 1). At 48 hours after transfection, cells were harvested,
955	lysed, and then incubated with anti-HA beads overnight. Protein expression was analyzed by
956	western blot using the indicated antibodies. Tubulin antibody was used as a control. (B)
957	HEK293T cells were transfected with GFP, MDA5-N-Flag, and control vector (lane 1), CV-A6
958	3C (lane 2) or CV-A6 3C H40D (lane 3). 36 hours later, cells were harvested and analyzed by
959	western blot. (C) HEK293T cells were transfected with GFP, MDA5-N-Flag, and control vector
960	(lane 1), EV-D68 3C (lane 2) or EV-D68 3C H40D (lane 3). 36 hours later, cells were harvested
961	and analyzed by western blot. (D) HEK293T cells were transfected with pRL-TK plasmid and
962	IFNβ-luc promoter reporter plus control plasmid (lane 1), MDA5-N-Myc (lanes 2-3) or CV-A6

 \geq

963 3C (lane 3) expression vectors. At 36 hours after transfection, cell lysates were assayed for 964 luciferase activity. Data are representative of three independent experiments. The error bars indicate the SD of three different experiments. (E) pRL-TK plasmid and IFNβ-luc promoter 965 reporter were transfected with control plasmid (lane 1), MDA5-N-Myc (lanes 2-3), or EV-D68 966 3C (lane 3) expression vectors into HEK293T cells. At 36 hours after transfection, cell lysates 967 were assayed for luciferase activity. Data are representative of three independent experiments. 968 969 The error bars indicate the SD of three different experiments.

970

Figure 12. 3C^{pro} from CA16, CV-A6, and EV-D68 targets TAK1 to impair the NF- KB response. 971 (A) HEK293T cells were transfected with pRL-TK plasmid and NF- κB -luc promoter reporter 972 plus control plasmid (lane 1), HA-CV-A16 3C (lanes 3, 4), or HA-3C H40D (lanes 5, 6). At 24 973 hours after transfection, cells were challenged with SeV (20HA/mL). 24 hours later, cell lysates 974 975 were assayed for luciferase activity. Data are representative of three independent experiments. 976 The error bars indicated the SD of three different experiments. P values <0.05 were considered 977 significant. (B) HEK293T cells were transfected with empty vector or increasing amounts of CV-A16 3C expression vector. After 24 hours, cells were challenged with SeV (20HA/mL) or 978 979 left uninfected for 20 hours. Then the cells were harvested and RNA was extracted to determine IKBA (B) and IL-8 (C) mRNA level by quantitative real-time PCR. (D) HEK293T cells were 980 981 transfected with plasmids encoding TAK1-Flag and control vector (lane 1), different amounts (150ng, 450ng) of HA-3C (lanes 2, 3) or HA-3C H40D (lanes 4, 5). 36 hours later, lysates of 982 cells were analyzed by western blot with antibodies against Flag and tubulin. Tubulin antibody 983 was used as a control. (E) HEK293T cells were transfected with pRL-TK plasmid and NF- κB -984 985 luc promoter reporter plus control plasmid (lane 1), CV-A6 3C (lane 3) or EV-D68 3C (lane 4).

 $\overline{\leq}$

986

987	lysates were assayed for luciferase activity. Data are representative of three independent
988	experiments. The error bars indicate the SD of three different experiments. P values <0.05 were
989	considered significant. (F) HEK293T cells were transfected with plasmids encoding TAK1-Flag
990	and control vector (lane 1), EV-D68 3C (lanes 2) or CV-A6 3C (G) (lane 2). 36 hours later,
991	lysates of cells were analyzed by western blot with antibodies against Flag and tubulin. Tubulin
992	antibody was used as a control.
993	
994	Figure 13. CV-A16, CV-A6, or EV-D68 3Cpro inhibits the TLR3-mediated NF-κB response. (A)
995	HEK293T cells were transfected with pRL-TK plasmid, NF- κB -luc promoter reporter and Flag-
996	TLR3 expression vector alone or with CV-A16 3C or CV-A16 3C H40D. 24 hours later, cells
997	were treated with poly I:C for 12 hours, and then cell lysates were analyzed by luciferase
998	activity. Data are representative of three independent experiments. The error bars indicated the
999	SD of three different experiments. (B) HEK293T cells were transfected with the TAK1-Flag
1000	expression vector. 12 hours later, cells were treated with increasing MOI (2,3) of CV-A16 virus
1001	for 20 hours. Then cell lysates were analyzed by western blot. (C) HEK293T cells were
1002	transfected with different amount of HA-CV-A16 3C plasmids (lanes 2, 3) or control vector
1003	(lane 1). 36 hours later, cells were harvested and endogenous TAK1 and 3C-HA protein were
1004	analyzed by western blot. Tubulin antibody was used as a control. (D) HEK293T cells were
1005	transfected with pRL-TK plasmid, NF- κ B -luc promoter reporter and Flag-TLR3 expression
1006	vector alone or along with CV-A6 3C or EV-D68 3C or their protease mutation H40D. 24 hours
1007	later, cells were treated with poly I:C for 12 hours, then cell lysates were analyzed by luciferase
1008	activity. Data are representative of three independent experiments. The error bars indicated the

24 hours after transfection, cells were challenged with SeV (20HA/mL). 24 hours later, cell

100	09	SD of three different experiments. TAK1-Flag was transfected with CV-A6 3C or its mutation
103	10	H40D(E), or with EV-D68 3C or its mutation H40D (F). 36 hours later, cells were harvested and
10:	11	proteins were analyzed by western blot. Tubulin antibody was used as a control.
103	12	
10:	13	Figure 14. Summary of the sites of CV-A16 $3C^{pro}$ activity in suppressing type I IFN and NF- κB
10:	14	pathways. The RNA virus enters target cells through the endocytic pathway, and TLRs detect the
10:	15	viral genomes in endosomes. Then, TLRs engage the cytosolic adapter to activate the E3
10:	16	ubiquitin (Ub) ligase, TRAF6, which ubiquitinates itself and recruits TAB proteins. TAB
10:	17	proteins activate TAK1. As a result, the IKK complex (IKK β , IKK α , and NEMO) is activated,
10:	18	which phosphorylates IkB proteins. Phosphorylation of IkB leads to its ubiquitination and
10:	19	proteasomal degradation, freeing NF- κ B. Active NF- κ B translocates to the nucleus to induce
102	20	inflammatory cytokine production. Once in the cytoplasm, viral RNA can be detected by RIG-
102	21	I/MDA5 which activates the IFN- β induction pathway through MAVS, located on mitochondria.
102	22	In our model, CV-A16, CV-A6, and EV-D683C ^{pro} all target TAK1 and also disrupt the
102	23	association of MDA5 and MAVS.
102	24	

41

Z

CV-A16

IFN +CV-A16

IFN+con

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

 \leq

Fig. 2

Z

 \leq

в

Fig. 7

 \sum

6

8

 \leq

IFN-β promoter

Α

в

CV-A16 EV-A71

+

CV-B3 EV-D68 CV-A6

+

+

CV-A16

EV-A71

EV-D68

+ CV-A6

CV-B3

D

2000

1500

EV-D68 3C

_

 \sum

Fig. 12

Fig. 13

Downloaded from http://jvi.asm.org/ on April 21, 2017 by UNIV OF CALIF SAN DIEGO

کم ک **RNA virus**

z

RIG-I/MDA5

 \leq