
FEN1 promotes tumor progression and confers cisplatin
resistance in non-small-cell lung cancer
Lingfeng He1,†, Libo Luo2,†, Hong Zhu1, Huan Yang1, Yilan Zhang1, Huan Wu1, Hongfang Sun1,
Feng Jiang3, Chandra S. Kathera1, Lingjie Liu4, Ziheng Zhuang2,5, Haoyan Chen6, Feiyan Pan1,
Zhigang Hu1, Jing Zhang1 and Zhigang Guo1

1 Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, China

2 Changzhou No. 7 People’s Hospital, China

3 Department of Thoracic Surgery, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, China

4 Southern University of Science and Technology of China, Shenzhen, China

5 School of Pharmaceutical Engineering and Life Sciences, Changzhou University, China

6 Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, China

Keywords

cisplatin resistance; flap endonuclease 1;

lung cancer; targeted therapy

Correspondence

Z. Guo, Jiangsu Key Laboratory for

Molecular and Medical Biotechnology,

College of Life Sciences, Nanjing Normal

University, 1 WenYuan Road, Nanjing

210023, China

Tel: +86 13801590731

E-mail: guozgang@gmail.com

†These authors contributed equally to this

manuscript

(Received 13 February 2017, revised 17

March 2017, accepted 17 March 2017)

doi:10.1002/1878-0261.12058

Lung cancer is one of the leading causes of cancer mortality worldwide.

The therapeutic effect of chemotherapy is limited due to the resistance of

cancer cells, which remains a challenge in cancer therapeutics. In this work,

we found that flap endonuclease 1 (FEN1) is overexpressed in lung cancer

cells. FEN1 is a major component of the base excision repair pathway for

DNA repair systems and plays important roles in maintaining genomic sta-

bility through DNA replication and repair. We showed that FEN1 is criti-

cal for the rapid proliferation of lung cancer cells. Suppression of FEN1

resulted in decreased DNA replication and accumulation of DNA damage,

which subsequently induced apoptosis. Manipulating the amount of FEN1

altered the response of lung cancer cells to chemotherapeutic drugs. A

small-molecule inhibitor (C20) was used to target FEN1 and this enhanced

the therapeutic effect of cisplatin. The FEN1 inhibitor significantly sup-

pressed cell proliferation and induced DNA damage in lung cancer cells. In

mouse models, the FEN1 inhibitor sensitized lung cancer cells to a DNA

damage-inducing agent and efficiently suppressed cancer progression in

combination with cisplatin treatment. Our study suggests that targeting

FEN1 may be a novel and efficient strategy for a tumor-targeting therapy

for lung cancer.

1. Introduction

Lung cancer is a leading cause of global cancer-related

deaths for both men and women (Centers for Disease

Control and Prevention, 2016). Non-small-cell lung

carcinoma (NSCLC) accounts for approximately 85%

of the lung cancer cases. Adenocarcinoma is the most

common type of NSCLC that both smokers and non-

smokers suffer from. Nowadays in clinical therapy,

most anticancer agents kill cells by interfering with

DNA replication or by inducing DNA damage, which

in turn leads to cell apoptosis (Gottesman, 2002; Liu,
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2009). Among these anticancer drugs, cisplatin repre-

sents a successful landmark in the history of cancer

clinical therapy. Once taken into the cells, cisplatin

intercalates and forms intrastrand crosslinks in DNA,

interferes with DNA replication and induces DNA

damage, and eventually triggers apoptosis or necrosis.

Cisplatin-based doublets are widely used for NSCLC

treatment and improve survival rates compared to pla-

cebo treatment (Rajeswaran et al., 2008). However,

the efficacy of cisplatin is not adequate due to the

highly effective DNA replication and repair system in

cancer cells. The mechanisms of cisplatin resistance

remain to be further revealed. Previous reports have

suggested that cancer resistance to DNA damage-

inducing agents is associated with the elevated expres-

sion of DNA repair enzymes in cancer cells. For

example, Lawson et al. have shown that DNA poly-

merase b, a DNA repair enzyme in base excision

repair (BER), is overexpressed and determines etopo-

side resistance in small-cell lung cancer (Lawson et al.,

2011). Liu et al. (2009) demonstrated that acquired

resistance of cancer cells to chemotherapy is mediated

by both BER and the homologous recombination

(HR) of DNA repair pathways. Based on these

reports, we hypothesized that the suppression of DNA

repair enzymes in cancer cells could overcome cis-

platin resistance of cancer cells.

DNA flap endonuclease 1 (FEN1) has been reported

to be a key player in various DNA repair pathways.

For example, in BER (Shen et al., 2005), FEN1 is

involved in the removal of flap structures formed dur-

ing long patch (LP). And in HR (Fehrmann et al.,

2015; Kikuchi et al., 2005) and mismatch repair (Liu

et al., 2015), FEN1 is also involved. Besides, FEN1

has been shown to be involved in nucleotide excision

repair (NER) by associating with ligase I in the final

step of NER (Mocquet et al., 2008). Moreover, FEN1

and the NER protein XPG (xeroderma pigmentosum

complementation group G) show homology in the

DNA-binding domain, suggesting that FEN1 may sup-

port XPG function in NER (Herrero et al., 2006).

Given that the cisplatin-induced intrastrand crosslink

of DNA adduct was mainly repaired by NER, we

hypothesized that the suppression of FEN1 expression

or inhibition of FEN1 activity might augment the ther-

apeutic response of cisplatin. FEN1 was initially

reported to play a role in DNA replication by remov-

ing the RNA primer during Okazaki fragment matura-

tion of the lagging strand (Balakrishnan and Bambara,

2013; Klungland and Lindahl, 1997). Consistent with

its function in DNA replication, FEN1 is required to

support the hyperproliferation of cells. Indeed, FEN1

is expressed at low levels in quiescent cells (Kim et al.,

2000) but is highly expressed in proliferative tissues

and cancers, including lung (Nikolova et al., 2009),

breast (Singh et al., 2008), gastric (Wang et al., 2014),

prostate (Lam et al., 2006), pancreatic (Iacobuzio-

Donahue et al., 2003), and brain cancers (Krause

et al., 2005). The level of FEN1 expression in cancer-

ous tissues has been correlated with advanced cancer

grade and aggressiveness (Abdel-Fatah et al., 2014;

Lam et al., 2006).

In view of the role of FEN1 in DNA replication, we

speculated that FEN1 might be essential for cell prolif-

eration of lung cancers. The fact that FEN1 is

involved in NER and other DNA repair pathways

prompted us to further speculate that targeting FEN1

could be a potential way to overcome the drug resis-

tance of lung cancer to cisplatin. FEN1 inhibitor could

be used as a stand-alone agent for blocking cancer cell

proliferation or combining with DNA damage-indu-

cing agents to augment the therapeutic efficacy. By

using the A549 cell line as a research model, we

demonstrated that FEN1 was essential for prolifera-

tion and cisplatin resistance of lung cancer cells. Inhi-

bition of FEN1 suppressed cell growth and resulted in

the accumulation of DNA double-strand breaks,

thereby inducing apoptosis. Furthermore, FEN1 inhi-

bitor impeded the progression of lung cancer and

resulted in an accumulative effect when combined with

cisplatin in vitro and on xenograft tumor mice models.

Our work showed that targeting FEN1 could be a

potential strategy for lung cancer therapy.

2. Materials and methods

2.1. Cell lines and cell culture

The human lung cancer cell lines A549, H1299, and

H460 were obtained from ATCC (Manassas, VA,

USA). These cells were cultured under conditions

described by the products’ instructions. The human

embryonic lung fibroblast cell line HELF was cultured

in DMEM (Invitrogen, Carlsbad, CA, USA) supple-

mented with 10% fetal bovine serum (FBS).

2.2. Antibody

Antibodies used in this paper are listed here: anti-P53

antibody (SC-126; Santa Cruz Biotechnology, Inc.,

Dallas, TX, USA), anticaspase-3 (SC-7148; Santa Cruz

Biotechnology, Inc.), antivinculin antibody (MAB3574;

Millipore, Bedford, MA, USA), anti-FEN1 (70185;

GeneTex, Inc., Irvine, CA, USA), antitubulin (AM103a;

Bio-world, Dublin, OH, USA), anti-GAPDH (AP0063;

Abgent, Suzhou, China), anti-c-H2AX (ab2893; Abcam,
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Cambridge, MA, USA), anticleaved caspase-3 antibody:

(Asp175) antibody #9661 (Cell Signaling Technology,

Danvers, MA, USA), antiphospho-P53: phospho-p53

(Ser15) antibody #9284 (Cell Signaling Technology),

anti-Myc-tag (AP0031M; Abgent), P53BP1 (SC-22760;

Santa Cruz), Alexa Fluor �488 goat anti-rabbit A-11008

Life Technologies, Alexa Fluor �594 donkey anti-rabbit

R37119 Life Technologies.

2.3. Antitumor effect on tumor xenografts in

nude mice

All animal experiments were conducted in accordance

with the National Institutes of Health Guide for the

Care and Use of Laboratory Animals. Male 4- to 5-

week-old BALB/C nude mice were used in this study.

A549 cells (2 9 106) suspended in 100 lL serum-free

medium were inoculated subcutaneously. Approxi-

mately two weeks later, when the average tumor volume

reached 100–120 mm3, the mice were randomly divided

into groups. FEN1 inhibitor (10 mg�kg�1 mice body

weight) and cisplatin (2 mg�kg�1 mice body weight)

were administered intraperitoneally daily for five con-

secutive days. Tumor sizes were measured by a Vernier

caliper every week thereafter, and tumor volumes

(mm3) were calculated as length 9 width2/2. All mice

were euthanized when the cancer volumes in the control

mice reached � 1000 mm3. The mice were housed and

maintained under standard NIH protocol.

2.4. Immunofluorescence staining

Cells were cultured in six-well plates containing acid-

treated cover slides and incubated overnight. The

cover slides were then washed with PBS, fixed with

4% formaldehyde in PBS for 30 min, and washed with

PBS again. Triton X-100 (0.05%) was added for 5 min

to permeabilize the cells. Slides were blocked with 3%

BSA and then incubated with primary antibody. The

slides were washed, incubated with secondary antibody

conjugated with FITC, washed again with PBS, and

stained with DAPI. The mounted slides were viewed

with a Nikon 80I 10-1500X microscope, and images

were captured with a camera.

2.5. Flow cytometric analysis

Cells were trypsinized, washed, and resuspended in

1 mL PBS with 5% FBS. Subsequently, cells were

washed twice with ice-cold PBS and fixed with 3 mL

ice-cold ethanol. After centrifugation, cells were

resuspended with 1 mL 50 lg�mL�1 RNase A and

50 lg�mL�1 propidium iodide (PI) at 37 °C for

30 min. The apoptosis ratio was then analyzed using a

FACS flow cytometer (Calibur, BD Biosciences, San

Jose, CA, USA).

2.6. TUNEL (TdT-mediated dUTP Nick-End

Labeling) assay

Cells were cultured in six-well plates containing acid-

treated cover slides and incubated overnight. The

cover slides were then washed with PBS, fixed with

4% formaldehyde in PBS for 30 min, and washed with

PBS again. Triton X-100 (1%) was added for 5 min to

permeabilize the cells. Three percent H2O2 was then

added for 10 min and cover slides were washed twice

with ice-cold PBS. Cells were incubated with TdT mar-

ker solution at 37 °C for 1 h and then gently washed

with PBS three times. Cells were incubated in the dark

with 100 lL dyeing buffer solution for 30 min, washed

with PBS, and stained with DAPI.

2.7. Metaphase spread preparation

Cells were collected and treated with colchicine to

arrest cells at metaphase. Cells were incubated

(20 min, room temperature) with hypotonic solution

(75 mM KCl), placed in a 37 °C water bath (5 min),

and fixed with Carnoy’s solution. The fixation process

was repeated three times, and a dropper was used to

place cells onto a clean slide. The cell spread was incu-

bated (55 °C overnight), stained with Giemsa solution,

and checked for aberrant chromosomes under a micro-

scope.

2.8. Colony-forming assay

Cells were plated in 6-cm dishes and incubated for

approximately 15 days at 37 °C. The cells were then

washed with PBS and stained with 0.05% crystal vio-

let. Stained plates were washed and dried prior to

scoring the colonies.

2.9. Lentivirus and stable cell line preparation

Lentivirus particles expressing the FEN1 gene were

generated by transfecting 293T cells with the FEN1

plasmids together with packaging plasmids. The virus-

containing medium was collected every 24 h for

3 days. The cells were incubated with the lentivirus-

containing medium plus 4 lg�mL�1 polybrene for 24 h
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and were then selected after 72 h in 1.0 lg�mL�1 puro-

mycin. All lentivirus particles were prepared by

Guangzhou Fitgene Biotechnology Co., Ltd., Guangz-

hou, China.

2.10. Immunocytochemistry analysis

Tissues were fixed in 10% formalin. Paraffin-embedded

sections from tissue specimens were deparaffinized and

heated at 97 °C in 10 mM citrate buffer (pH 6.0) for

20 min for antigen retrieval. Primary antibodies used

in immunocytochemistry were raised against FEN1.

Immunoreactivities were analyzed by estimating the

percentage of cells showing characteristic staining and

the intensity of staining. The intensity of staining was

graded as 1 (weak), 2 (medium), or 3 (strong). The

results were scored by multiplying the percentage of

positive cells (P) by the intensity (I) to obtain the Q-

score (Q), which ranged between 0 and 300. A Q-score

of 300 indicated that 100% of the cells were strongly

stained (Q = P 9 I; maximum = 300).

2.11. Drug sensitivity assay

Sensitivity to a DNA damage reagent was determined

by a cell growth inhibition assay (Simpson et al.,

2010). A549 cells were seeded (1500 per well), incu-

bated (overnight, 37 °C), treated (1 h, 37 °C) with

multiple dilutions of H2O2, washed in a fresh medium

(DMEM containing 10% FBS), and incubated (72 h)

under normal growth conditions (37 °C, 5% CO2).

The number of viable cells was determined by the Cell-

Titer 96 AQueous one-solution cell proliferation assay

(Promega, Madison, WI, USA). At least four replica-

tions for each clone were averaged. Data were

expressed as the percentage of growth relative to

untreated controls.

3. Results

3.1. FEN1 was up-regulated in lung cancer cells

and associated with poor prognosis

As an essential player in DNA replication, FEN1 is

expected to be up-regulated in cancerous tissues. To

verify this hypothesis, we searched the TCGA database

and compared the FEN1 expression levels between

cancerous and normal tissues. The results showed that

FEN1 mRNA expression level in lung cancer tissues

was significantly higher than that in normal tissues

(Fig. 1A). We confirmed this observation by immuno-

histochemistry (IHC) assays comparing the FEN1 pro-

tein expression level on normal and lung cancer

samples from surgical treatment (Fig. 1B). In normal

tissue, the proportion of patients with a FEN1 score

below 100 was 85% (95% CI, 76–97, P < 0.01). This

proportion was significantly lower in cancer tissues

(12%, 95% CI, 8–15, P < 0.01). Conversely, the pro-

portion of patients with FEN1 scores above 200 was

significantly higher in cancerous tissues than in normal

ones (76% vs 12%, P < 0.001, Fig. 1C).

Next, we investigated whether the FEN1 expression

level was associated with the malignancy of lung can-

cers. Data from the TCGA database indicated that

malignancy grade rose with increasing FEN1 expres-

sion levels in lung cancers (Fig. 1D and Table S1),

suggesting that the malignancy of lung cancer was cor-

related with FEN1 overexpression. In support of this

correlation, patients with high levels of FEN1 had sig-

nificantly shorter overall survival time than those with

low levels of FEN1 (Fig. 1E). These results suggest

that FEN1 was up-regulated in lung cancers, associ-

ated with tumor malignancy and poor prognosis.

3.2. FEN1 promoted tumor progression in vitro

and in vivo

The observation that FEN1 was up-regulated in lung

cancers was further confirmed in cancer cell lines. As

shown in Fig. S3, lung cancer cell lines (A549, H1299,

and H460) displayed significantly higher FEN1 expres-

sion level than the normal lung cell line (HELF).

A549 cells were chosen in this study because they were

widely used as an in vitro model for NSCLC drug

metabolism research. The data above have already

indicated that FEN1 overexpression was associated

with cancer. But whether high expression level of

FEN1 would influence tumor progression was still not

clear. We speculated that FEN1 promoted tumor pro-

gression. To test this hypothesis, we compared the

proliferation rate of A549 cells in which FEN1 was

down-regulated by siRNA (Fig. 2A) with those in

which FEN1 was ectopically overexpressed (Fig. 2B).

The results showed that the down-regulation of FEN1

suppressed cell growth (Fig. 2C), whereas overexpres-

sion of FEN1 promoted cell growth (Fig. 2D). More-

over, the colony-forming assay showed that

overexpression of FEN1 induced colony formation

(Fig. 2E–F), while the down-regulation of endogenous

FEN1 reduced colony formation efficiency in A549

cells (Fig. 2G). In addition, flow cytometry analysis

showed that FEN1 knockdowns led to a decrease in S

and G2/M phase proportions and an increase in G1

proportions compared to control cells (data not

shown). Furthermore, after being transplanted subcu-

taneously into nude mice, cells with ectopic FEN1
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overexpression gave rise to significantly bigger tumors

than parental A549 cells did (Fig. 2H). Under the

same conditions, the transplantation of A549 cells

with FEN1 knockdown into nude mice did not lead

to tumor formation (data not shown). These data ver-

ified our speculation that FEN1 promoted tumor pro-

gression in vitro and in vivo.

3.3. FEN1 contributed to cisplatin resistance of

A549 cells

Cisplatin is thought to enter the tumor cells, causing

various types of DNA damage and triggering apopto-

sis/necrosis. Sensitivity to cisplatin, therefore, was
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predicted to be mediated by DNA repair pathways

(Rosell et al., 2002). In view of the roles of FEN1 in

multiple repair processes, such as BER (Simpson et al.,

2010), nonhomologous end-joining (Cao et al., 2016),

HR (Hu et al., 2016; Liu et al., 2016b), NER (Herrero

et al., 2006; Mocquet et al., 2008; Zhao et al., 2016),

and mismatch repair (MMR; Liu et al., 2016a), it was

pertinent to speculate that the high level of FEN1

expression in tumors contributed to intrinsic or

acquired drug resistance. To test this hypothesis, we

performed drug-sensitive experiments in A549 lung

cancer cells with different FEN1 levels. The results

showed that the overexpression of FEN1 served as a

protective effect against cisplatin treatment (Fig. 3A).

At the same time, FEN1 knockdown sensitized A549

cells to cisplatin (Fig. 3B). To further analyze the

impact of FEN1 on cell death, the sub-G1 fraction was

determined after cisplatin treatment. The results

showed that knockdown of FEN1 resulted in the accu-

mulation of sub-G1 fraction after cisplatin exposure
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(Fig. 3C). Overexpression of FEN1 reduced the genera-

tion of cisplatin-induced sub-G1 fraction (Fig. 3D).

Consistently, TUNEL staining showed that FEN1-

knockdown cells were more apoptotic than control cells

after cisplatin treatment (Fig. 3E,F), while FEN1-over-

expressing cells were less apoptotic than control cells

(Fig. 3G,H). These data suggested that FEN1 was pro-

tecting the cells from cisplatin-induced apoptosis.
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We have developed drug-resistant cell and designed

experiments to evaluate the possibility to overcome cis-

platin resistance. As shown in Fig. S4A, cisplatin-resis-

tant cell was established from A549 lung cancer cells

and we name it as A549-cisplatin-R cells or A549-R

for abbreviation. The A549-R cells can grow well in

the medium with 2 lg�mL�1 cisplatin but wild-type

A549 cells died after 3 days’ cultivation (Fig. S4B). To

evaluate the possibility to overcome cisplatin resis-

tance, we treated A549-R cells with 10 and 20 lM
FEN1 inhibitor C20 for 3 days. As shown in

Fig. S4C, A549-R cells partially lost the resistance to

cisplatin.

3.4. FEN1 expression affected the repair of

cisplatin-induced DNA damage in A549 cells

Repair defects of cisplatin-induced damage can lead

to the accumulation of unrepaired DNA intermediates

and DNA double-strand breaks (DSBs) (Guo et al.,

2010, 2012; Zheng et al., 2007a, 2011). Therefore, we

predicted that cells with FEN1 down-regulation would

show higher levels of DNA DSBs compared with con-

trol cells. To test this hypothesis, we determined the

foci of cH2AX and 53BP1, markers of DNA DSBs in

cells. Indeed, down-regulation of FEN1 resulted in

the accumulation of cH2AX (Fig. 4A,B) and 53BP1

(Fig. 4E,F) in cells. Conversely, FEN1 overexpression

reduced the level of cisplatin-induced foci formation

of cH2AX (Fig. 4C,D) and 53BP1 (Fig. 4G,H) in

cells.

Accumulation of unrepaired DNA damage induced

by cisplatin will consequently cause chromosomal

breaks (van Gent et al., 2001; Soza et al., 2009). To

test the impacts of FEN1 on chromosomal breaks

induced by cisplatin, we analyzed metaphase nuclei for

chromosomal aberrations. FEN1-deficient cells exhib-

ited significantly increased levels of chromosomal frag-

ments and breaks compared with the controlled

parental ones (Fig. 4I–J). However, cells with high

FEN1 expression level displayed reduced levels of

chromosomal breakage (Fig. 4K).

3.5. FEN1 inhibitor resulted in the accumulation

of unrepaired DSBs and enhanced sensitivity to

cisplatin

Based on the results above, we inferred that a

FEN1-specific inhibitor might be able to serve as an

anticancer drug which could be either used alone to

suppress cancer cell growth or combined with DNA

damage-inducing agents to improve therapeutic

efficacy. To test this hypothesis, a previously reported

FEN1 inhibitor (compound 20 C20) was used (Exell

et al., 2016; Tumey et al., 2005). Compound #20

(Fig. S2) is an N-hydroxyl urea derivative that specifi-

cally inhibits FEN1 activity, with an IC50 of 3 nM, the

most potent FEN1 inhibitor tested in vitro at the time

(He et al., 2016).

To determine whether targeting the inhibition of

FEN1 enhanced the activity of cisplatin in A549 cells,

A549 cells were pretreated with FEN1 inhibitor, fol-

lowed by cisplatin treatment at various concentrations

for 48 h. Figure 5A shows a significant decrease in the

survival of C20-treated cells. In support of these data,

the cells with both C20 and cisplatin treatments showed

a higher number of cH2AX and 53BP1 foci compared

with the ones with cisplatin-only treatment (Fig. 5B–E).
To evaluate the toxicity of FEN1 inhibitor on cells

with different FEN1 levels, we compared the IC50 of

C20 among various lung cancer cell lines. The results

showed a dose-dependent decrease in the cell prolifera-

tion of A549, H1299,and H460 (data not shown) with

an IC50 of 12.5, 22.1, and 20.8 lM, respectively

(Fig. 5F). Notably, cells with low FEN1 expression

levels were less sensitive to FEN1 inhibitor. IC50 of

HELF (48.7 lM) was much higher than that of A549

cells, indicating that the expression of FEN1 in differ-

ent cancer cells could be correlated with their sensitiv-

ity to FEN1 inhibitor.

3.6. Antitumor effects of FEN1 inhibition on

xenografts tumor mice

To further investigate the impact of FEN1 inhibition

on tumor progression in vivo, we used nude mice to

do a xenograft study. The A549 cells were trans-

planted subcutaneously into nude mice. After the

tumor volume reached 100–200 mm3, mice were trea-

ted with the FEN1 inhibitor, cisplatin, or the combi-

nation of the FEN1 inhibitor and cisplatin. The

growth of tumors was monitored up to 30 days. As

shown in Fig. 6A, the tumor volume gradually

increased in control mice in a time-dependent man-

ner. Treatment with cisplatin or FEN1 inhibitor

alone resulted in a slight decrease in the growth of

xenograft tumors. When cisplatin was combined with

the FEN1 inhibitor, the tumor growth was signifi-

cantly reduced. At the same time, the animal sur-

vival rate also improved in the combined treatment

group, as indicated in Fig. 6B. These results sug-

gested that the inhibition of FEN1 could augment

the efficacy of cisplatin in the lung cancer xenograft

mouse model.

8 Molecular Oncology (2017) ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Targeting FEN1 for NSCLC therapy L. He et al.



3.7. FEN1 down-regulation or inhibition activated

the intrinsic pathway of apoptosis

The P53 pathway is the most common mechanism of

apoptosis. Under stress, P53 is activated by

postphosphorylation and acts as a transcription factor

that activates the expression of genes involved in apop-

tosis. Although A549 has a mutant EGFR and ele-

vated EGF pathway activity, it has a wild-type P53

gene. We tested whether FEN1 deficiency-induced

γ-H2AX

sh2-FEN1

DAPI

Merge

Medium MockA sh1-FEN1

γ-
H

2A
X

 fo
ci

 
po

si
tiv

e 
ce

lls
 (%

) *B *

0

7

14

γ-
H

2A
X

 fo
ci

 
po

si
tiv

e 
ce

lls
 (%

) *D

0

2

4
53

B
P1

 fo
ci

 
nu

m
be

r i
n 

ce
lls **

0

6
12
18F **

53
B

P1
 fo

ci
 

nu
m

be
r i

n 
ce

llsH

0

8
6
4
2

***

C
hr

om
os

om
e 

br
ea

ks
 (%

)

**
J

0

4.5

9

I MockMedium sh1-FEN1 sh2-FEN1

C
hr

om
os

om
e 

br
ea

ks
 (%

)

*
K

1.5

0

3

sh2-FEN1

DAPI

Merge

53BP1

Medium Mock sh1-FEN1E Medium Vector Lenti-FEN1

Merge

53BP1

DAPI

G

Lenti-FEN1Vector

DAPI

γ-H2AX

Merge

MediumC

Fig. 4. FEN1 contributed to the repair of cisplatin-induced DNA damage. (A) Cell immunostaining assay showed that more c-H2AX foci

formed in FEN1-knockdown A549 cells after cisplatin treatment (5 lM, 72 h). Scale bars, 50 lm. (B) Quantification of panel A. (C) Cell

immunostaining assay showed that FEN1 overexpression reduced cisplatin-induced c-H2AX foci formation in A549 cells. Scale bars, 50 lm.

(D) Quantification of panel C. Cell staining with 53BP1 antibody showed that cisplatin-induced 53BP1 foci were increased by FEN1

knockdown (E) but decreased by FEN1 overexpression in A549 cells (G). (F) and (H) were the quantification data for panels E and G,

respectively. Scale bars, 50 lm. (I) Representative image for chromosome aberrations assay. Chromosome in FEN1-knockdown cells was

more fragile after cisplatin exposure (5 lM, 72 h). Detail shows a magnification of chromosome aberration. (J) was the statistical

quantification for panel I, and (K) was the statistical quantification of chromosome aberrations in FEN1 overexpression in A549 cells under

treatment with cisplatin.

9Molecular Oncology (2017) ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

L. He et al. Targeting FEN1 for NSCLC therapy



apoptosis was p53 dependent. We showed that both

p53 and the phosphorylated form of p53 have been

induced by cisplatin (Fig. 7A), indicating that the p53

pathway was activated by cisplatin. As a downstream

event of p53 activation, the apoptosis indicator,

cleaved caspase-3, was also up-regulated in A549 cells

after cisplatin exposure. Moreover, the DNA damage

level, as indicated by c-H2AX, was correlated with the

up-regulation of the apoptosis indicator and up-regu-

lated by cisplatin (Fig. 7A).

The correlated up-regulation between c-H2AX and

cleavage caspase-3 promoted us to test whether DNA

damage could induce an apoptotic response. In order

to figure this out, we treated A549 cells with FEN1

siRNA and the apoptotic responses in A549 cells

were measured. As expected, FEN1 knockdown

increased the level of c-H2AX. Simultaneously, the

expression of phosphorylated P53 and cleaved cas-

pase-3 was also up-regulated by FEN1 knockdown,

similar to cisplatin treatment (Fig. 7B). These data

suggested that DNA damage resulted from FEN1

knockdown and could induce p53-dependent apopto-

sis. To further confirm the role of FEN1 and DNA

damage level in cisplatin-induced apoptosis, we deter-

mined the cellular response to cisplatin in A549 cells

with FEN1 overexpression. As shown in Fig. 7C,

overexpression of FEN1 reduced cisplatin-induced

DNA damage. The cisplatin-induced p53 activation
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and cleaved caspase-3 formation were also reduced.

This observation suggested that FEN1 protected cells

from cisplatin-induced apoptosis by reducing DNA

damage in cells.

To further study the mechanisms of FEN1 inhibi-

tion-induced apoptosis in vivo, the tumor in Fig. 6C

was subjected to IHC assays. As shown in Fig. 7D,

the combination of cisplatin and FEN1 inhibitor

showed greater collaborative effects on cell apoptosis

compared with caspase-3- and TUNEL-positive cell

treatments. In addition, and consistent with previous

findings, treatment with the combination of FEN1

inhibitor and cisplatin resulted in more DSBs in

tumors, as indicated by c-H2AX and 53BP1 staining,

than treatment with FEN1 inhibitor or cisplatin alone.

Taken together, the above results suggested that FEN1

down-regulation or inhibition activated the p53-

mediated intrinsic pathway of apoptosis.

4. Discussion

FEN1 has been reported to be overexpressed in lung

cancer, testis and brain tumors, and altered FEN1

expression might impact the therapeutic response

(Nikolova et al., 2009). In prostate cancer, FEN1 is

overexpressed and is associated with a high Gleason

score, which suggests that FEN1 might be a potential

marker for prostate cancer diagnosis and therapy

(Lam et al., 2006; Posadas et al., 2009). Mice carrying

with FEN1 E160D mutation were predisposed to

autoimmunity, chronic inflammation, and cancers,

which results in the initiation and progression of can-

cer (Zheng et al., 2007b). FEN1 mutations that specifi-

cally disrupt the PCNA interaction have been reported

to cause aneuploidy-associated cancer progression

(Zheng et al., 2007a). It was found that the FEN1-

69GG genotypes were significantly correlated with

increased risk for developing breast cancer, which

highlights FEN1 as an important gene in human

breast carcinogenesis (Lv et al., 2014). Genomic and

protein expression analyses revealed FEN1 as a key

biomarker in breast and ovarian epithelial cancers, in

which FEN1 overexpression is associated with high

grade, high stage, and poor survival (Abdel-Fatah

et al., 2014). Our team identified the FEN1 mutation

in colorectal cancer cells and evaluated its function in

cancer progression (Sun et al., 2017). Based on these

reports, we speculate that FEN1 could be used as a

promising cancer diagnostic biomarker.

FEN1 plays important roles in the removal of the

RNA primer during Okazaki fragment maturation and

in the removal of flap structures in LP BER (Balakr-

ishnan and Bambara, 2013). Thus, FEN1 has dual

functions in DNA replication and repair. FEN1 has

been suggested to be required in fast-dividing cells,

such as cancer cells. The use of FEN1 as a key bio-

marker in breast, ovarian, and gastric cancers has been

attempted (Abdel-Fatah et al., 2014; Wang et al.,

2014). In this study, we found that FEN1 overexpres-

sion is associated with cancer progression, while it is

inversely correlated with survivorship in non-small-cell

lung cancer. Although the correlation between FEN1

expression and tumor progression had been demon-

strated, further study was required to clarify whether

the overexpression of FEN1 was a cause or a result of
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tumor progression. We hypothesized that the inhibi-

tion of FEN1 could suppress cancer growth by

blocking DNA synthesis. Indeed, siRNA-mediated

down-regulation of FEN1 in A549 cells slowed cell

proliferation, leading to the accumulation of unre-

paired DSBs and a higher percentage of sub-G1 cells.

Inhibition of FEN1 by a small-molecule inhibitor also

yielded similar results. Meanwhile, and consistent with

the previously reported findings, the overexpression of

FEN1 promoted cell proliferation, colony formation

and induced tumorigenesis. These data indicated that

the overexpression of FEN1 was a trigger for tumor

initiation and progression rather than a reflection of

rapid cell division.

In addition to its role in DNA replication,

increased FEN1 expression may also be a response to

severe DNA damage in cancer cells. FEN1 has been

reported to be induced by genotoxic stress in various

cells (Markus Christmann et al., 2005; Wang et al.,

2015). Consistent with this finding, we found that

FEN1 could be induced by cisplatin (Fig. S1). More-

over, we demonstrated that FEN1 overexpression

protected NSCLC against cisplatin (Fig. 3A). NSCLC

is one of the deadliest human diseases, and cisplatin

has been widely used as a chemotherapeutic drug for

the treatment of NSCLC. However, long-term treat-

ment of NSCLC by cisplatin will induce drug resis-

tance of NSCLC to cisplatin. Because the intrastrand

crosslink is the major lesion caused by cisplatin, it is

primarily repaired via the NER system (Masters and

Koberle, 2003). In addition, the homologous recombi-

nation repair (HR) that allows error-free repair of

the double-strand breaks caused by the excision of

cisplatin–DNA adducts has been implicated in the

repair of cisplatin-induced DNA damage (Borst et al.,

2008). The MMR system has also been reported to

recognize cisplatin-induced DNA damage (Sedletska

et al., 2007).
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The direct roles of FEN1 in the repair of cisplatin-

induced DNA lesions have not yet been reported.

However, previous reports have demonstrated that the

down-regulation of FEN1 can increase the sensitivity

of cisplatin in LN308 glioma cells and SGC-7901 gas-

tric cancer cell (Nikolova et al., 2009; Xie et al., 2016),

implying the involvement of FEN1 in the repair of cis-

platin-induced DNA damage. Indeed, besides its role

in BER, FEN1 has also been reported to be involved

in MMR (Johnson et al., 1995; Liu et al., 2015), NER

(Mocquet et al., 2008; Shivji et al., 1995), and HR

(Fehrmann et al., 2015; Shivji et al., 1995). Based on

the reports above, we believed that FEN1 expression

might impact the therapeutic response of cisplatin. We

further speculated that a high FEN1 expression level

in NSCLC contributed to intrinsic or acquired drug

resistance. Therefore, we altered the FEN1 level in

A549 cells. The results showed that FEN1-deficient

cells were more sensitive to cisplatin treatment, leading

to accumulation of unrepaired DSBs in cells. However,

overexpression of FEN1 protected cells from apoptosis

induced by cisplatin. These data indicated that FEN1

was a determinant of cisplatin resistance in non-small-

cell lung cancer.

The dual function of FEN1 in DNA replication

and repair makes it an ideal target for cancer ther-

apy. Inhibiting FEN1 in cancer cells not only sup-

pressed cancer progression but also enhanced the

toxicity of DNA damage-inducing agents. The toxic-

ity induced by FEN1 inhibition or down-regulation

were the combined results of failures in both DNA

replication and repair. Due to higher rates of replica-

tion compared to noncancerous cells, cancer cells

accumulate and tend to have more innate DNA dam-

age. Moreover, cancer cells are usually defective in

cell cycle checkpoints and have shorter repair times.

For these reasons, the inhibition of FEN1 has more

severe impacts on cancer cells than on the surround-

ing normal tissues. The efficacy of FEN1 inhibition

could be further enhanced by combining FEN1 inhi-

bition with DNA damage-inducing agents, such as

cisplatin.

Taken together, our findings implicated FEN1 in

DNA replication and repair as a mechanism of lung

cancer development and cancer drug resistance. In this

study, we presented evidence that FEN1 was overex-

pressed in lung cancer and promoted tumor progres-

sion in vitro and in vivo. Down-regulation by siRNA

or inhibition FEN1 activity by small-molecule inhibi-

tor suppressed cell proliferation and sensitized lung

cancer cells to cisplatin. Using a tumor mouse model,

we showed that the inhibition of FEN1 impeded the

progression of tumor growth by activating intrinsic

pathway of apoptosis, thereby enhancing the animal’s

lifespan. These data suggested that targeting FEN1

could be a potential strategy for the treatment of lung

cancer.
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Supporting information

Additional Supporting Information may be found

online in the supporting information tab for this

article:
Fig. S1. FEN1 expression was elevated by cisplatin

treatment.

Fig. S2. Chemical structure of compound 20.

Fig. S3. FEN1 expression level in different kind of cell

lines. FEN1 is overexpressed in NSCLC cell line A549.

Fig. S4. (A) A549-Cisplatin resistance cell line was cul-

tured in 2 lg�mL�1 cisplatin containing medium. (B)

Cell survival between A549 normal cell line and cis-

platin resistance cell line when treated with 2 lg�mL�1

cisplatin. (C) Cell survival rate of A549-cisplatin resis-

tance cell line when treated with FEN1 inhibitor C20.

Table S1. Associations between FEN1 expression and

clinical/histological parameters in lung cancer patients.
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